Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844534

RESUMO

Understanding the shared and divergent mechanisms across antidepressant (AD) classes and probiotics is critical for improving treatment for mood disorders. Here we examine the transcriptomic effects of bupropion (NDRI), desipramine (SNRI), fluoxetine (SSRI) and a probiotic formulation (Lacidofil®) on 10 regions across the mammalian brain. These treatments massively alter gene expression (on average, 2211 differentially expressed genes (DEGs) per region-treatment combination), highlighting the biological complexity of AD and probiotic action. Intersection of DEG sets against neuropsychiatric GWAS loci, sex-specific transcriptomic portraits of major depressive disorder (MDD), and mouse models of stress and depression reveals significant similarities and differences across treatments. Interestingly, molecular responses in the infralimbic cortex, basolateral amygdala and locus coeruleus are region-specific and highly similar across treatments, whilst responses in the Raphe, medial preoptic area, cingulate cortex, prelimbic cortex and ventral dentate gyrus are predominantly treatment-specific. Mechanistically, ADs concordantly downregulate immune pathways in the amygdala and ventral dentate gyrus. In contrast, protein synthesis, metabolism and synaptic signaling pathways are axes of variability among treatments. We use spatial transcriptomics to further delineate layer-specific molecular pathways and DEGs within the prefrontal cortex. Our study reveals complex AD and probiotics action on the mammalian brain and identifies treatment-specific cellular processes and gene targets associated with mood disorders.

2.
Heliyon ; 7(6): e07247, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34124407

RESUMO

The global pandemic of COVID-19 has rapidly increased the number of infected cases as well as asymptomatic individuals in many, if not all the societies around the world. This issue increases the demand for accurate and rapid detection of SARS-CoV-2. While accurate and rapid detection is critical for diagnosing SARS-CoV-2, the appropriate course of treatment must be chosen to help patients and prevent its further spread. Testing platform accuracy with high sensitivity and specificity for SARS-CoV-2 is equally important for clinical, regional, and global arenas to mitigate secondary transmission rounds. The objective of this article is to compare the current detection technology and introduce the most accurate and rapid ones that are suitable for pandemic circumstances. Hence, the importance of rapid detection in societies is discussed initially. Following this, the current technology for rapid detection of SARS-CoV-2 is explained and classified into three different categories: nucleic acid-based, protein-based, and point of care (PoC) detection testing. Then, the current issues for diagnostic procedures in laboratories are discussed. Finally, the role of new technologies in countering COVID-19 is also introduced to assist researchers in the development of accurate and timely detection of coronaviruses. As coronavirus continues to affect human lives in a detrimental manner, the development of rapid and accurate virus detection methods could promote COVID-19 diagnosis accessible to both individuals and the mass population at patient care. In this regard, rRT-PCR and multiplex RT-PCR detection techniques hold promise.

3.
J Biomed Mater Res B Appl Biomater ; 109(12): 1986-1999, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34028179

RESUMO

Collagen is an insoluble fibrous protein that composes the extracellular matrix in animals. Although collagen has been used as a biomaterial since 1881, the properties and the complex structure of collagen are still extensive study subjects worldwide. In this article, several topics of importance for understanding collagen research are reviewed starting from its historical milestones, followed by the description of the collagen superfamily and its complex structures, with a focus on type I collagen. Subsequently, some of the superior properties of collagen-based biomaterials, such as biocompatibility, biodegradability, mechanical properties, and cell activities, are pinpointed. These properties make collagen applicable in biomedicine, such as wound healing, tissue engineering, surface coating of medical devices, and skin supplementation. Moreover, some antimicrobial strategies and the general host tissue responses regarding collagen as a biomaterial are presented. Finally, the current status and clinical application of the three-dimensional (3D) printing techniques for the fabrication of collagen-based scaffolds and the reconstruction of the human heart's constituents, such as capillary structures or even the entire organ, are discussed. Besides, an overall outlook for the future of this unique biomaterial is provided.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno/química , Colágeno/farmacologia , Humanos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
4.
Adv Biomed Res ; 7: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29657927

RESUMO

BACKGROUND: Cancer is the second cause of death after cardiovascular diseases worldwide. Tumor metastasis is the main cause of death in patients with cancer; therefore, unraveling the molecular mechanisms involved in metastasis is critical. Epithelial-mesenchymal transition (EMT) is believed to promote tumor metastasis. Based on the critical roles of long noncoding RNA-ATB (lncRNA-ATB) and SETD8 genes in cancer pathogenesis and EMT, in this study, we aimed to assess expression profile and clinicopathological relevance of these two genes in human gastric cancer. MATERIALS AND METHODS: Quantitative real-time polymerase chain reaction was performed to assess these gene expressions in gastric cancer tissues and various cell lines. The associations between these gene expressions and clinicopathological characteristics were also analyzed. RESULTS: Insignificant downregulation of lncRNA-ATB and significant upregulation of SETD8 in cancerous versus noncancerous gastric tissues were observed. Among different examined cell lines, all displayed both genes expression. Except for a significant inverse correlation between the expression levels of lncRNA-ATB and depth of invasion (T) and a direct association between SETD8 levels and advanced tumor grades, no significant association was found with other clinicopathological characteristics. CONCLUSION: lncRNA-ATB and SETD8 genes may play a critical role in gastric cancer progression and may serve as potential diagnostic/prognostic biomarkers in cancer patients.

5.
Brief Funct Genomics ; 16(6): 348-360, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459995

RESUMO

Cancer burden rises globally at an alarming pace. According to GLOBOCAN 2012, gastric cancer (GC) is regarded as the fifth most common malignancy in the world. Being twice as high in men as in women, GC is the third leading cause of cancer mortality in both sexes globally. Being labeled as 'junk DNA', pseudogenes were considered as nonfunctional 'trash', which contribute nothing to survival of the organism; therefore, a number of strategies have been developed to circumvent their accidental detection. Recent progresses have confirmed that pseudogenes can have broad and multifaceted spectrum of activities in human cancers in general and GC in particular. Furthermore, the mentioned functions are parental gene-dependent and/or -independent. Therefore, pseudogenes can be regarded as the emerging class of elaborate modulators of gene expression involved in pathogenesis of human cancers including gastric adenocarcinoma.


Assuntos
Pseudogenes , Neoplasias Gástricas/genética , Feminino , Humanos , Masculino , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...