Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 51(11): 2018-30, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21945097

RESUMO

Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to modulate lipid raft-dependent signaling, but not yet lipid raft-dependent oxidative stress. Previously, we have shown that ethanol-induced membrane remodeling, i.e., an increase in membrane fluidity and alterations in physical and biochemical properties of lipid rafts, participated in the development of oxidative stress. Thus, we decided to study n-3 PUFA effects in this context, by pretreating hepatocytes with eicosapentaenoic acid (EPA), a long-chain n-3 PUFA, before addition of ethanol. EPA was found to increase ethanol-induced oxidative stress through membrane remodeling. Addition of EPA resulted in a marked increase in lipid raft aggregation compared to ethanol alone. In addition, membrane fluidity of lipid rafts was markedly enhanced. Interestingly, EPA was found to preferentially incorporate into nonraft membrane regions, leading to raft cholesterol increase. Lipid raft aggregation by EPA enhanced phospholipase Cγ translocation into these microdomains. Finally, phospholipase Cγ was shown to participate in the potentiation of oxidative stress by promoting lysosome accumulation, a major source of low-molecular-weight iron. To conclude, the ability of EPA to modify lipid raft physical and chemical properties plays a key role in the enhancement, by this dietary n-3 PUFA, of ethanol-induced oxidative stress.


Assuntos
Gorduras Insaturadas na Dieta/farmacologia , Ácido Eicosapentaenoico/farmacologia , Etanol/farmacologia , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Hepatology ; 47(1): 59-70, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18038449

RESUMO

UNLABELLED: The role of the hepatocyte plasma membrane structure in the development of oxidative stress during alcoholic liver diseases is not yet fully understood. Previously, we have established the pivotal role of membrane fluidity in ethanol-induced oxidative stress, but no study has so far tested the involvement of lipid rafts. In this study, methyl-beta-cyclodextrin or cholesterol oxidase, which were found to disrupt lipid rafts in hepatocytes, inhibited both reactive oxygen species production and lipid peroxidation, and this suggested a role for these microstructures in oxidative stress. By immunostaining of lipid raft components, a raft clustering was detected in ethanol-treated hepatocytes. In addition, we found that rafts were modified by formation of malondialdehyde adducts and disulfide bridges. Interestingly, pretreatment of cells by 4-methyl-pyrazole (to inhibit ethanol metabolism) and various antioxidants prevented the ethanol-induced raft aggregation. In addition, treatment of hepatocytes by a stabilizing agent (ursodeoxycholic acid) or a fluidizing compound [2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)octanoate] led to inhibition or enhancement of raft clustering, respectively, which pointed to a relationship between membrane fluidity and lipid rafts during ethanol-induced oxidative stress. We finally investigated the involvement of phospholipase C in raft-induced oxidative stress upon ethanol exposure. Phospholipase C was shown to be translocated into rafts and to participate in oxidative stress by controlling hepatocyte iron content. CONCLUSION: Membrane structure, depicted as membrane fluidity and lipid rafts, plays a key role in ethanol-induced oxidative stress of the liver, and its modulation may be of therapeutic relevance.


Assuntos
Etanol/efeitos adversos , Hepatócitos/metabolismo , Microdomínios da Membrana/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Colesterol Oxidase/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Fluidez de Membrana/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Ratos , Ratos Sprague-Dawley , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...