Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5336, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504074

RESUMO

We live surrounded by vibrations generated by moving objects. These oscillatory stimuli propagate through solid substrates, are sensed by mechanoreceptors in our body and give rise to perceptual attributes such as vibrotactile pitch (i.e. the perception of how high or low a vibration's frequency is). Here, we establish a mechanistic relationship between vibrotactile pitch perception and the physical properties of vibrations using behavioral tasks, in which vibratory stimuli were delivered to the human fingertip or the mouse forelimb. The resulting perceptual reports were analyzed with a model demonstrating that physically different combinations of vibration frequencies and amplitudes can produce equal pitch perception. We found that the perceptually indistinguishable but physically different stimuli follow a common computational principle in mouse and human. It dictates that vibrotactile pitch perception is shifted with increases in amplitude toward the frequency of highest vibrotactile sensitivity. These findings suggest the existence of a fundamental relationship between the seemingly unrelated concepts of spectral sensitivity and pitch perception.


Assuntos
Percepção da Altura Sonora/fisiologia , Limiar Sensorial/fisiologia , Percepção do Tato/fisiologia , Animais , Feminino , Dedos/inervação , Dedos/fisiologia , Membro Anterior/inervação , Membro Anterior/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vibração
2.
Nat Methods ; 17(10): 1052-1059, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32994566

RESUMO

Accurate tracking and analysis of animal behavior is crucial for modern systems neuroscience. However, following freely moving animals in naturalistic, three-dimensional (3D) or nocturnal environments remains a major challenge. Here, we present EthoLoop, a framework for studying the neuroethology of freely roaming animals. Combining real-time optical tracking and behavioral analysis with remote-controlled stimulus-reward boxes, this system allows direct interactions with animals in their habitat. EthoLoop continuously provides close-up views of the tracked individuals and thus allows high-resolution behavioral analysis using deep-learning methods. The behaviors detected on the fly can be automatically reinforced either by classical conditioning or by optogenetic stimulation via wirelessly controlled portable devices. Finally, by combining 3D tracking with wireless neurophysiology we demonstrate the existence of place-cell-like activity in the hippocampus of freely moving primates. Taken together, we show that the EthoLoop framework enables interactive, well-controlled and reproducible neuroethological studies in large-field naturalistic settings.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Lemuridae/fisiologia , Monitorização Fisiológica/veterinária , Neurofisiologia/instrumentação , Animais , Automação , Condicionamento Operante , Camundongos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Optogenética , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...