Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Anal Chem ; 96(27): 10986-10994, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38935274

RESUMO

Tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS) has proven a versatile tool for the identification and quantification of proteins and their post-translational modifications (PTMs). Protein glycosylation is a critical PTM for the stability and biological function of many proteins, but full characterization of site-specific glycosylation of proteins remains analytically challenging. Collision-induced dissociation (CID) is the most common fragmentation method used in LC-MS/MS workflows, but the loss of labile modifications renders CID inappropriate for detailed characterization of site-specific glycosylation. Electron-based dissociation methods provide alternatives that retain intact glycopeptide fragments for unambiguous site localization, but these methods often underperform CID due to increased reaction times and reduced efficiency. Electron-activated dissociation (EAD) is another strategy for glycopeptide fragmentation. Here, we use a ZenoTOF 7600 SCIEX instrument to compare the performance of various fragmentation techniques for the analysis of a complex mixture of mammalian O- and N-glycopeptides. We found CID fragmentation identified the most glycopeptides and generally produced higher quality spectra, but EAD provided improved confidence in glycosylation site localization. Supplementing EAD with CID fragmentation (EAciD) further increased the number and quality of glycopeptide identifications, while retaining localization confidence. These methods will be useful for glycoproteomics workflows for either optimal glycopeptide identification or characterization.


Assuntos
Glicopeptídeos , Proteômica , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Glicopeptídeos/química , Proteômica/métodos , Animais , Glicosilação , Elétrons , Cromatografia Líquida , Camundongos , Humanos
2.
J Proteomics ; 285: 104942, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285907

RESUMO

Understanding the impacts of chemical exposure in marine wildlife is challenging, due to practical and ethical constraints that preclude traditional toxicology research on these animals. This study addressed some of these limitations by presenting an ethical and high throughput cell-based approach to elucidate molecular-level effects of contaminants on sea turtles. The experimental design addressed basic questions of cell-based toxicology, including chemical dose and exposure time. Primary green turtle skin cells were exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA) for 24 and 48 h, at three sub-lethal, environmentally relevant concentrations (1, 10 and 100 µg/L). Sequential window acquisition of all theoretical mass spectra (SWATH-MS) identified over 1000 differentially abundant proteins within the 1% false discovery rate (FDR) threshold. The 24 h exposure resulted in a greater number of differentially abundant proteins, compared to 48 h exposure, for both contaminants. However, there were no statistically significant dose-response relationships for the number of differentially synthesised proteins, nor differences in the proportion of increased vs decreased proteins between or within exposure times. Known in vivo markers of contaminant exposure, superoxide dismutase and glutathione S-transferase, were differentially abundant following exposure to PCB153 and PFNA. SIGNIFICANCE: Cell-based (in vitro) proteomics provides an ethical and high throughput approach to understanding the impacts of chemical contamination on sea turtles. Through investigating effects of chemical dose and exposure duration on unique protein abundance in vitro, this study provides an optimised framework for conducting cell-based studies in wildlife proteomics, and highlights that proteins detected in vitro could act as biomarkers of chemical exposure and effect in vivo.


Assuntos
Bifenilos Policlorados , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/metabolismo , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Animais Selvagens , Pele/química
3.
Toxins (Basel) ; 15(3)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36977115

RESUMO

Aculeate hymenopterans use their venom for a variety of different purposes. The venom of solitary aculeates paralyze and preserve prey without killing it, whereas social aculeates utilize their venom in defence of their colony. These distinct applications of venom suggest that its components and their functions are also likely to differ. This study investigates a range of solitary and social species across Aculeata. We combined electrophoretic, mass spectrometric, and transcriptomic techniques to characterize the compositions of venoms from an incredibly diverse taxon. In addition, in vitro assays shed light on their biological activities. Although there were many common components identified in the venoms of species with different social behavior, there were also significant variations in the presence and activity of enzymes such as phospholipase A2s and serine proteases and the cytotoxicity of the venoms. Social aculeate venom showed higher presence of peptides that cause damage and pain in victims. The venom-gland transcriptome from the European honeybee (Apis mellifera) contained highly conserved toxins which match those identified by previous investigations. In contrast, venoms from less-studied taxa returned limited results from our proteomic databases, suggesting that they contain unique toxins.


Assuntos
Himenópteros , Toxinas Biológicas , Animais , Abelhas , Peçonhas/toxicidade , Proteômica , Transcriptoma
4.
Front Immunol ; 14: 1091066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793724

RESUMO

Introduction: Breeding for tick resistance is a sustainable alternative to control cattle ticks due to widespread resistance to acaricidal drugs and the lack of a protective vaccine. The most accurate method used to characterise the phenotype for tick resistance in field studies is the standard tick count, but this is labour-intensive and can be hazardous to the operator. Efficient genetic selection requires reliable phenotyping or biomarker(s) for accurately identifying tick-resistant cattle. Although breed-specific genes associated with tick resistance have been identified, the mechanisms behind tick resistance have not yet been fully characterised. Methods: This study applied quantitative proteomics to examine the differential abundance of serum and skin proteins using samples from naïve tick-resistant and -susceptible Brangus cattle at two-time points following tick exposure. The proteins were digested into peptides, followed by identification and quantification using sequential window acquisition of all theoretical fragment ion mass spectrometry. Results: Resistant naïve cattle had a suite of proteins associated with immune response, blood coagulation and wound healing that were significantly (adjusted P < 10- 5) more abundant compared with susceptible naïve cattle. These proteins included complement factors (C3, C4, C4a), alpha-1-acid glycoprotein (AGP), beta-2-glycoprotein-1, keratins (KRT1 & KRT3) and fibrinogens (alpha & beta). The mass spectrometry findings were validated by identifying differences in the relative abundance of selected serum proteins with ELISA. The proteins showing a significantly different abundance in resistant cattle following early and prolonged tick exposures (compared to resistant naïve) were associated with immune response, blood coagulation, homeostasis, and wound healing. In contrast, susceptible cattle developed some of these responses only after prolonged tick exposure. Discussion: Resistant cattle were able to transmigrate immune-response related proteins towards the tick bite sites, which may prevent tick feeding. Significantly differentially abundant proteins identified in this research in resistant naïve cattle may provide a rapid and efficient protective response to tick infestation. Physical barrier (skin integrity and wound healing) mechanisms and systemic immune responses were key contributors to resistance. Immune response-related proteins such as C4, C4a, AGP and CGN1 (naïve samples), CD14, GC and AGP (post-infestation) should be further investigated as potential biomarkers for tick resistance.


Assuntos
Bovinos , Proteômica , Rhipicephalus , Infestações por Carrapato , Animais , Biomarcadores , Suscetibilidade a Doenças , Glicoproteínas , Bovinos/genética , Infestações por Carrapato/genética , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária
5.
Environ Res ; 216(Pt 1): 114352, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210607

RESUMO

All seven species of sea turtle are facing increasing pressures from human activities that are impacting their health. Changes in circulating blood proteins of an individual, or all members of a population, can provide an early indicator of adverse health outcomes. Non-targeted measurement of all detectable proteins in a blood sample can indicate physiological changes. In the context of wildlife toxicology, this technique can provide a powerful tool for discovering biomarkers of chemical exposure and effect. This study presents a non-targeted examination of the protein abundance in sea turtle plasma obtained from three geographically distinct foraging populations of green turtles (Chelonia mydas) on the Queensland coast. Relative changes in protein expression between sites were compared, and potential markers of contaminant exposure were investigated. Blood plasma protein profiles were distinct between populations, with 85 out of the 116 identified proteins differentially expressed (p < 0.001). The most strongly dysregulated proteins were predominantly acute phase proteins, suggestive of differing immune status between the populations. The highest upregulation of known markers of immunotoxicity, such as pentraxin fusion and complement factor h, was observed in the Moreton Bay turtles. Forty-five different organohalogens were also measured in green turtle plasma samples as exposure to some organohalogens (e.g., polychlorinated biphenyls) has previously been identified as a cause for immune dysregulation in marine animals. The few detected organohalogens were at very low (pg/mL) concentrations in turtles from all sites, and are unlikely to be the cause of the proteome differences observed. However, the changes in protein expression may be indicative of exposure to other chemicals or environmental stressors. The results of this study provide important information about differences in protein expression between different populations of turtles, and guide future toxicological and health studies on east-Australian green sea turtles.


Assuntos
Tartarugas , Poluentes Químicos da Água , Animais , Humanos , Tartarugas/metabolismo , Poluentes Químicos da Água/análise , Proteômica , Austrália , Imunidade
6.
Neurotox Res ; 40(1): 173-178, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757506

RESUMO

In this work, we investigated the in vitro neurotoxicity of Calliophis intestinalis venom using chick biventer cervicis neuromuscular preparations and electrophysiological analysis of voltage-gated sodium (NaV) channels expressed in HEK293 cells. We found that the indirect twitches of the neuromuscular preparations decreased over time when exposed to venom. However, the responses of these preparations to the agonists acetylcholine, carbachol, and potassium chloride were not changed after incubation with the venom. Our electrophysiological experiments show that C. intestinalis venom acts as a NaV channel antagonist-the first known from a vertebrate venom-by decreasing the peak current of NaV1.4 channels without changing the kinetics of activation or inactivation. Our proteomic results accord with earlier analyses and find that the venom contains three-finger toxins, cysteine-rich secretory proteins, kunitz peptides, phospholipase A2s, snake venom metalloproteases, and vespryns. Some of the three-finger toxins are similar to the δ-elapitoxins from the venom of the closely related Calliophis bivirgatus. However, δ-elapitoxins act as NaV channel agonists in C. bivirgatus whereas C. intestinalis venom contains NaV channel antagonists. The toxins and mechanisms responsible for the neuromuscular symptoms remain unclear as does the identity of the NaV channel antagonists. These aspects of this unusual venom require further study.


Assuntos
Síndromes Neurotóxicas , Proteômica , Acetilcolina , Animais , Galinhas/metabolismo , Venenos Elapídicos/toxicidade , Células HEK293 , Humanos
7.
Parasite Immunol ; 43(7): e12836, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843060

RESUMO

Previous studies have applied genomics and transcriptomics to identify immune and genetic markers as key indicator traits for cattle tick susceptibility/resistance; however, results differed between breeds, and there is lack of information on the use of host proteomics. Serum samples from Santa Gertrudis cattle (naïve and phenotyped over 105 days as tick-resistant [TR] or tick-susceptible [TS]) were used to conduct differential abundance analyses of protein profiles. Serum proteins were digested into peptides followed by identification and quantification using sequential window acquisition of all instances of theoretical fragment ion mass spectrometry. Before tick infestation, abundance of 28 proteins differed significantly (adjusted P < 10-5 ) between TR and TS. These differences were also observed following tick infestation (TR vs TS) with a further eight differentially abundant proteins in TR cattle, suggesting possible roles in adaptive responses. The intragroup comparisons (TS-0 vs TS and TR-0 vs TR) showed that tick infestation elicited quite similar responses in both groups of cattle, but with relatively stronger responses in TR cattle. Many of the significantly differentially abundant proteins in TR Santa Gertrudis cattle (before and after tick infestation) were associated with immune responses including complement factors, chemotaxis for immune cells and acute-phase responses.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Suscetibilidade a Doenças , Proteoma , Infestações por Carrapato/veterinária
8.
Biochem Biophys Res Commun ; 553: 72-77, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33756348

RESUMO

Germin and germin-like proteins (GLPs) are a broad family of extracellular glycoproteins ubiquitously distributed in plants. Overexpression of Oryza sativa root germin like protein 1 (OsRGLP1) enhances superoxide dismutase (SOD) activity in transgenic plants. Here, we report bioinformatic analysis and heterologous expression of OsRGLP1 to study the role of glycosylation on OsRGLP1 protein stability and activity. Sequence analysis of OsRGLP1 homologs identified diverse N-glycosylation sequons, one of which was highly conserved. We therefore expressed OsRGLP1 in glycosylation-competent Saccharomyces cerevisiae as a Maltose Binding Protein (MBP) fusion. Mass spectrometry analysis of purified OsRGLP1 showed it was expressed by S. cerevisiae in both N-glycosylated and unmodified forms. Glycoprotein thermal profiling showed little difference in the thermal stability of the glycosylated and unmodified protein forms. Circular Dichroism spectroscopy of MBP-OsRGLP1 and a N-Q glycosylation-deficient variant showed that both glycosylated and unmodified MBP-OsRGLP1 had similar secondary structure, and both forms had equivalent SOD activity. Together, we concluded that glycosylation was not critical for OsRGLP1 protein stability or activity, and it could therefore likely be produced in Escherichia coli without glycosylation. Indeed, we found that OsRGLP1 could be efficiently expressed and purified from K12 shuffle E. coli with a specific activity of 1251 ± 70 Units/mg. In conclusion, we find that some highly conserved N-glycosylation sites are not necessarily required for protein stability or activity, and describe a suitable method for production of OsRGLP1 which paves the way for further characterization and use of this protein.


Assuntos
Sequência Conservada , Glicoproteínas/química , Glicoproteínas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Glicosilação , Oryza/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/química , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/isolamento & purificação , Superóxido Dismutase/metabolismo
9.
Toxins (Basel) ; 13(2)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567660

RESUMO

The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δδ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C. bivirgatus toxins also contains the previously named maticotoxins and is somewhat closely related to cytotoxins from other elapids. However, the toxins from this clade that have been characterized are not themselves cytotoxic. No other toxins show clear relationships to toxins of known function from other species.


Assuntos
Venenos Elapídicos/genética , Elapidae/genética , Evolução Molecular , Neurotoxinas/genética , Proteínas de Répteis/genética , Transcriptoma , Animais , Venenos Elapídicos/metabolismo , Elapidae/metabolismo , Perfilação da Expressão Gênica , Neurotoxinas/metabolismo , Filogenia , Proteínas de Répteis/metabolismo
10.
Sci Total Environ ; 751: 141680, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890801

RESUMO

Non-targeted protein expression at the cellular level can provide insights into mechanistic effects of contaminants in wildlife, and hence new and potentially more accurate biomarkers of exposure and effect. However, this technique has been relatively unexplored in the realm of in vitro biomarker discovery in threatened wildlife, despite the vulnerability of this group of animals to adverse sublethal effects of contaminant exposure. Here we examined the usefulness of non-targeted protein expression for biomarker discovery in green sea turtles (Chelonia mydas) by investigating differences in the response of primary cells from five different tissue types that were exposed to three contaminants known to accumulate in this species. Cells derived from C. mydas skin, liver, kidney, ovary and small intestine were exposed to 100 µg/L of either polychlorinated biphenyl 153 (PCB153), perfluorononanoic acid (PFNA) or phenanthrene for 24 h. The global protein expression was then quantitatively evaluated using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Comparison of the global protein profiles revealed that, while a majority of proteins were mutually expressed in controls of all tissue types (~90%), the response to exposure in terms of protein expression strength was significantly different between tissue types. Furthermore, a comparison to known markers of chemical exposure in sea turtles from the literature indicated that in vitro response can reflect known in vivo responses. In particular, markers such as heat shock protein (HSP) 60, glutathione S-transferases (GSTs) and superoxide dismutases (SODs), cytochrome P450 and catalase were dysregulated in response to exposure. Furthermore, potential new markers of exposure were discovered such as annexin, an important protein in cell signalling processes. While this methodology proved promising further studies are required to confirm the accuracy of in vitro protein expression as a tool for biomarker discovery in wildlife.


Assuntos
Bifenilos Policlorados , Tartarugas , Poluentes Químicos da Água , Animais , Biomarcadores , Feminino , Bifenilos Policlorados/análise , Pele/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036249

RESUMO

The evolution of an aquatic lifestyle from land dwelling venomous elapids is a radical ecological modification, bringing about many evolutionary changes from morphology to diet. Diet is an important ecological facet which can play a key role in regulating functional traits such as venom composition and prey-specific targeting of venom. In addition to predating upon novel prey (e.g., fish, fish eggs and invertebrates), the venoms of aquatic elapids also face the challenge of increased prey-escape potential in the aquatic environment. Thus, despite the independent radiation into an aquatic niche on four separate occasions, the venoms of aquatic elapids are evolving under convergent selection pressures. Utilising a biolayer interferometry binding assay, this study set out to elucidate whether crude venoms from representative aquatic elapids were target-specific to the orthosteric site of postsynaptic nicotinic acetylcholine receptor mimotopes of fish compared to other terrestrial prey types. Representatives of the four aquatic lineages were: aquatic coral snakes representative was Micrurus surinamensis;, sea kraits representative was Laticauda colubrina; sea snakes representatives were two Aipysurus spp. and eight Hydrophis spp; and water cobras representative was Naja annulata. No prey-specific differences in crude venom binding were observed from any species tested, except for Aipysurus laevis, which showed slight evidence of prey-potency differences. For Hydrophis caerulescens, H. peronii, H. schistosus and M. surinamensis, there was a lack of binding to the orthosteric site of any target lineage. Subsequent testing on the in vitro chick-biventer cervicis muscle preparation suggested that, while the venoms of these species bound postsynaptically, they bound to allosteric sites rather than orthosteric. Allosteric binding is potentially a weaker but faster-acting form of neurotoxicity and we hypothesise that the switch to allosteric binding is likely due to selection pressures related to prey-escape potential. This research has potentially opened up the possibility of a new functional class of toxins which have never been assessed previously while shedding light on the selection pressures shaping venom evolution.


Assuntos
Venenos Elapídicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Sítios de Ligação , Venenos Elapídicos/metabolismo , Elapidae , Neurotoxinas/farmacologia , Ligação Proteica , Receptores Nicotínicos/metabolismo , Especificidade da Espécie
12.
Viruses ; 12(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971986

RESUMO

The family Birnaviridae are a group of non-enveloped double-stranded RNA viruses which infect poultry, aquatic animals and insects. This family includes agriculturally important pathogens of poultry and fish. Recently, next-generation sequencing technologies have identified closely related birnaviruses in Culex, Aedes and Anopheles mosquitoes. Using a broad-spectrum system based on detection of long double-stranded RNA, we have discovered and isolated a birnavirus from Aedes notoscriptus mosquitoes collected in northern New South Wales, Australia. Phylogenetic analysis of Aedes birnavirus (ABV) showed that it is related to Rotifer birnavirus, a pathogen of microscopic aquatic animals. In vitro cell infection assays revealed that while ABV can replicate in Aedes-derived cell lines, the virus does not replicate in vertebrate cells and displays only limited replication in Culex- and Anopheles-derived cells. A combination of SDS-PAGE and mass spectrometry analysis suggested that the ABV capsid precursor protein (pVP2) is larger than that of other birnaviruses and is partially resistant to trypsin digestion. Reactivity patterns of ABV-specific polyclonal and monoclonal antibodies indicate that the neutralizing epitopes of ABV are SDS sensitive. Our characterization shows that ABV displays a number of properties making it a unique member of the Birnaviridae and represents the first birnavirus to be isolated from Australian mosquitoes.


Assuntos
Aedes/virologia , Birnaviridae/classificação , Birnaviridae/isolamento & purificação , Filogenia , Rotíferos/virologia , Animais , Anopheles , Anticorpos Monoclonais , Austrália , Birnaviridae/genética , Proteínas do Capsídeo/genética , Linhagem Celular , Culex , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , New South Wales , Proteínas Virais , Vírion
13.
Toxicon X ; 7: 100050, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32642644

RESUMO

Contralaterally positioned maxillary (upper jaw) venom glands in snakes are mechanically independent, being able to discharge venom from either gland separately. This has led some studies to test venom function and composition of each contralaterally positioned venom gland to investigate any differences. However, the data on the subject to-date derives from limited sample sizes, appearing somewhat contradictory, and thus still remains inconclusive. Here, we tested samples obtained from the left and right venom glands of four N. siamensis specimens for their relative binding to the orthosteric site of amphibian, lizard, snake, bird, and rodent alpha-1 nicotinic acetylcholine receptors. We also show the relative proteomic patterns displayed by reversed phase liquid chromatography - mass spectrometry. Our results indicate that three of the venom gland sets showed no difference in both functional binding and composition, whilst one venom gland set showed a slight difference in functional binding (but not in specificity patterns between prey types) or venom composition. We hypothesise that these differences in functional binding may be due to one gland having previously ejected venom at some time prior to venom extraction, whilst its contralateral counterpart did not. This might cause the differential rate of toxin replenishment to be unequal between glands, thus instigating the difference in potency, likely due to uneven toxin proportions between glands at the time of venom extraction. These results demonstrate that the separate venom producing glands in snakes remain under the same genetic control elements and produce identical venom components.

14.
Mol Reprod Dev ; 87(5): 574-597, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32083367

RESUMO

Environmental temperature has effects on sperm quality with differences in susceptibility between cattle subspecies and breeds, but very little is known about the seminal plasma protein (SPP) changes resulting from testicular heat stress. Scrotal insulation (SI) for 48 hr was applied to Brahman (Bos indicus) bulls. Semen was collected at 3-day intervals from before, until 74 days post-SI. The changes in sperm morphology and motility following SI were comparable to previously reported and differences were detected in measures of sperm chromatin conformation as early as 8 days post-SI. New proteins spots, in the SPP two-dimensional (2-D) gels, were apparent when comparing pre-SI with 74 days post-SI, and SPP identified as associated with mechanisms of cellular repair and protection. Similar trends between 2-D gel and Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) data was observed, with SWATH-MS able to quantify individual SPP that otherwise were not resolved on 2-D gel. The SPP assessment at peak sperm damage (21-24 days) showed a significant difference in 29 SPP (adjusted p < .05), and identified six proteins with change in abundance in the SI group. In conclusion both spermatozoa and SPP composition of bulls are susceptible to temperature change incurred by SI, and SPP markers for testicular heat insults may be detected.


Assuntos
Bovinos , Resposta ao Choque Térmico/fisiologia , Escroto/fisiologia , Análise do Sêmen , Proteínas de Plasma Seminal/metabolismo , Animais , Temperatura Corporal/fisiologia , Temperatura Alta , Masculino , Espectrometria de Massas , Proteômica , Sêmen/metabolismo , Análise do Sêmen/veterinária , Proteínas de Plasma Seminal/análise , Espermatogênese/fisiologia
15.
Toxins (Basel) ; 12(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012831

RESUMO

Slow lorises are enigmatic animal that represent the only venomous primate lineage. Their defensive secretions have received little attention. In this study we determined the full length sequence of the protein secreted by their unique brachial glands. The full length sequences displayed homology to the main allergenic protein present in cat dander. We thus compared the molecular features of the slow loris brachial gland protein and the cat dander allergen protein, showing remarkable similarities between them. Thus we postulate that allergenic proteins play a role in the slow loris defensive arsenal. These results shed light on these neglected, novel animals.


Assuntos
Alérgenos , Gatos , Alérgenos Animais/imunologia , Glicoproteínas , Lorisidae , Toxinas Biológicas , Alérgenos/química , Alérgenos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Glicoproteínas/química , Glicoproteínas/genética , Modelos Moleculares , Homologia de Sequência de Aminoácidos , Toxinas Biológicas/química , Toxinas Biológicas/genética
16.
Biochem Biophys Res Commun ; 524(3): 555-560, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32014252

RESUMO

The New Delhi metallo-ß-lactamase (NDM-1) mediates resistance to ß-lactam antibiotics. NDM-1 was likely formed as the result of a gene fusion between sequences encoding the first six amino acids of cytoplasm-localised aminoglycosidase, AphA6, and a periplasmic metallo-ß -lactamase. We show that NDM-1 has an atypical signal peptide and is inefficiently secreted. Two new blaNDM-1 alleles that have polymorphisms in the signal peptide; NDM-1(P9R), a proline to arginine substitution, and NDM-2, a proline to alanine substitution (P28A) were studied. Here, we show that both the P9R and P28A substitutions improve secretion compared to NDM-1 and display higher resistance to some ß-lactam antibiotics. Mass spectrometry analysis of these purified NDM proteins showed that the P28A mutation in NDM-2 creates new signal peptide cleavage sites at positions 27 and 28. For NDM-1, we detected a signal peptide cleavage site between L21/M22 of the precursor protein. We find no evidence that NDM-1 is a lipoprotein, as has been reported elsewhere. In addition, expression of NDM-2 improves the fitness of E. coli, compared to NDM-1, in the absence of antibiotic selection. This study shows how optimization of the secretion efficiency of NDM-1 leads to increased resistance and increased fitness.


Assuntos
Alelos , Evolução Molecular , Aptidão Genética , Klebsiella/enzimologia , Klebsiella/genética , Seleção Genética , beta-Lactamases/genética , Sequência de Aminoácidos , Animais , Resistência Microbiana a Medicamentos/genética , Camundongos , Testes de Sensibilidade Microbiana , Sinais Direcionadores de Proteínas , beta-Lactamases/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-31634575

RESUMO

Dispholidus typus and Thelotornis mossambicanus are closely related rear-fanged colubrid snakes that both possess strongly procoagulant venoms. However, despite similarities in overall venom biochemistry and resulting clinical manifestations, the underlying venom composition differs significantly between the two species. As a result, the only available antivenom-which is a monovalent antivenom for D. typus-has minimal cross reactivity with T. mossambicanus and is not a clinically viable option. It was hypothesised that this lack of cross reactivity is due to the additional large metalloprotease protein within T. mossambicanus venom, which may also be responsible for faster coagulation times. In this study, we found that T. mossambicanus venom is a more powerful activator of prothrombin than that of D. typus and that the SVMP transcripts from T. mossambicanus form a clade with those from D. typus. The sequences from D. typus and T. mossambicanus were highly similar in length, with the calculated molecular weights of the T. mossambicanus transcripts being significantly less than the molecular weights of some isoforms on the 1D SDS-PAGE gels. Analyses utilising degylcosylating enzymes revealed that T. mossambicanus SVMPs are glycosylated during post-translational modification, but that this does not lead to the different molecular weight bands observed in 1D SDS-PAGE gels. However, differences in glycosylation patterns may still explain some of the difference between the enzymatic activities and neutralization by antivenom that have been observed in these venoms. The results of this study provide new information regarding the treatment options for patients envenomated by T. mossambicanus as well as the evolution of these dangerous snakes.


Assuntos
Colubridae/fisiologia , Metaloproteases/metabolismo , Protrombina/metabolismo , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Animais , Colubridae/genética , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicosilação , Metaloproteases/genética , Filogenia , Protrombina/química , Protrombina/farmacologia , Transcriptoma
18.
Int J Mol Sci, v. 21, n. 19, 7377, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3272

RESUMO

The evolution of an aquatic lifestyle from land dwelling venomous elapids is a radical ecological modification, bringing about many evolutionary changes from morphology to diet. Diet is an important ecological facet which can play a key role in regulating functional traits such as venom composition and prey-specific targeting of venom. In addition to predating upon novel prey (e.g., fish, fish eggs and invertebrates), the venoms of aquatic elapids also face the challenge of increased prey-escape potential in the aquatic environment. Thus, despite the independent radiation into an aquatic niche on four separate occasions, the venoms of aquatic elapids are evolving under convergent selection pressures. Utilising a biolayer interferometry binding assay, this study set out to elucidate whether crude venoms from representative aquatic elapids were target-specific to the orthosteric site of postsynaptic nicotinic acetylcholine receptor mimotopes of fish compared to other terrestrial prey types. Representatives of the four aquatic lineages were: aquatic coral snakes representative was Micrurus surinamensis;, sea kraits representative was Laticauda colubrina; sea snakes representatives were two Aipysurus spp. and eight Hydrophis spp; and water cobras representative was Naja annulata. No prey-specific differences in crude venom binding were observed from any species tested, except for Aipysurus laevis, which showed slight evidence of prey-potency differences. For Hydrophis caerulescens, H. peronii, H. schistosus and M. surinamensis, there was a lack of binding to the orthosteric site of any target lineage. Subsequent testing on the in vitro chick-biventer cervicis muscle preparation suggested that, while the venoms of these species bound postsynaptically, they bound to allosteric sites rather than orthosteric. Allosteric binding is potentially a weaker but faster-acting form of neurotoxicity and we hypothesise that the switch to allosteric binding is likely due to selection pressures related to prey-escape potential. This research has potentially opened up the possibility of a new functional class of toxins which have never been assessed previously while shedding light on the selection pressures shaping venom evolution.

19.
Sci Total Environ ; 672: 625-633, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974354

RESUMO

Sulfate reducing bacteria (SRB) can contribute to facilitating serious concrete corrosion through the production of hydrogen sulfide in sewers. Recently, free nitrous acid (FNA) was discovered as a promising antimicrobial agent to inhibit SRB activities thereby limiting hydrogen sulfide production in sewers. However, knowledge of the bacterial response to increasing levels of the antimicrobial agent is unknown. Here we report the proteomic response of Desulfovibrio vulgaris Hildenborough and reveal that the antimicrobial effect of FNA is multi-targeted and dependent on the FNA levels. This was achieved using a sequential window acquisition of all theoretical mass spectrometry analysis to determine protein abundance variations in D. vulgaris during exposure to different FNA concentrations. When exposed to 1.0 µg N/L FNA, nitrite reduction (nitrite reductase) related proteins and nitrosative stress related proteins, including the hybrid cluster protein, showed distinct increased abundances. When exposed to 4.0 and 8.0 µg N/L FNA, increased abundance was detected for proteins putatively involved in nitrite reduction. Abundance of proteins involved in the sulfate reduction pathway (from adenylylphophosulfate to sulfite) and lactate oxidation pathway (from pyruvate to acetate) were initially inhibited in response to FNA at 8 h incubation, and then recovered at 12 h incubation. Lowered ribosomal protein abundance in D. vulgaris was detected, however, total cellular protein levels were mostly constant in the presence or absence of FNA. In addition, this study indicates that proteins coded by genes DVU2543, DVU0772, and DVU3212 potentially participate in resisting oxidative stress with FNA exposure. These findings share new insights for understanding the dynamic responses of D. vulgaris to FNA and could be useful to guide and improve the practical applications of FNA-based technologies for control of sewer corrosion.


Assuntos
Anti-Infecciosos/toxicidade , Desulfovibrio vulgaris/fisiologia , Ácido Nitroso/toxicidade , Proteoma/metabolismo , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Oxirredução , Proteômica , Sulfatos , Sulfetos
20.
Toxicol In Vitro ; 55: 62-74, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30471431

RESUMO

Venom can affect any part of the body reachable via the bloodstream. Toxins which specifically act upon the coagulation cascade do so either by anticoagulant or procoagulant mechanisms. Here we investigated the coagulotoxic effects of six species within the medically important pit viper genus Protobothrops (Habu) from the Chinese mainland and Japanese islands, a genus known to produce hemorrhagic shock in envenomed patients. Differential coagulotoxicity was revealed: P. jerdonii and P. mangshanensis produced an overall net anticoagulant effect through the pseudo-procoagulant clotting of fibrinogen; P. flavoviridis and P. tokarensis exhibit a strong anticoagulant activity through the destructive cleavage of fibrinogen; and while P. elegans and P. mucrosquamatus both cleaved the A-alpha and B-beta chains of fibrinogen they did not exhibit strong anticoagulant activity. These variations in coagulant properties were congruent with phylogeny, with the closest relatives exhibiting similar venom effects in their action upon fibrinogen. Ancestral state reconstruction indicated that anticoagulation mediated by pseudo-procoagulant cleavage of fibrinogen is the basal state, while anticoagulation produced by destructive cleavage of fibrinogen is the derived state within this genus. This is the first in depth study of its kind highlighting extreme enzymatic variability, functional diversification and clotting diversification within one genus surrounding one target site, governed by variability in co-factor dependency. The documentation that the same net overall function, anticoagulation, is mediated by differential underlying mechanics suggests limited antivenom cross-reactivity, although this must be tested in future work. These results add to the body of knowledge necessary to inform clinical management of the envenomed patient.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Trimeresurus , Animais , Fator Xa/fisiologia , Fibrinogênio/fisiologia , Humanos , Trombina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...