Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(6): ar77, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598296

RESUMO

In favorable conditions, eukaryotic cells proceed irreversibly through the cell division cycle (G1-S-G2-M) in order to produce two daughter cells with the same number and identity of chromosomes of their progenitor. The integrity of this process is maintained by "checkpoints" that hold a cell at particular transition points of the cycle until all requisite events are completed. The crucial functions of these checkpoints seem to depend on irreversible bistability of the underlying checkpoint control systems. Bistability of cell cycle transitions has been confirmed experimentally in frog egg extracts, budding yeast cells and mammalian cells. For fission yeast cells, a recent paper by Patterson et al. (2021) provides experimental evidence for an abrupt transition from G2 phase into mitosis, and we show that these data are consistent with a stochastic model of a bistable switch governing the G2/M checkpoint. Interestingly, our model suggests that their experimental data could also be explained by a reversible/sigmoidal switch, and stochastic simulations confirm this supposition. We propose a simple modification of their experimental protocol that could provide convincing evidence for (or against) bistability of the G2/M transition in fission yeast.


Assuntos
Mitose , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Mitose/fisiologia , Ciclo Celular/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Fase G2/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
PLoS Comput Biol ; 20(1): e1011151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190398

RESUMO

The mammalian cell cycle is regulated by a well-studied but complex biochemical reaction system. Computational models provide a particularly systematic and systemic description of the mechanisms governing mammalian cell cycle control. By combining both state-of-the-art multiplexed experimental methods and powerful computational tools, this work aims at improving on these models along four dimensions: model structure, validation data, validation methodology and model reusability. We developed a comprehensive model structure of the full cell cycle that qualitatively explains the behaviour of human retinal pigment epithelial-1 cells. To estimate the model parameters, time courses of eight cell cycle regulators in two compartments were reconstructed from single cell snapshot measurements. After optimisation with a parallel global optimisation metaheuristic we obtained excellent agreements between simulations and measurements. The PEtab specification of the optimisation problem facilitates reuse of model, data and/or optimisation results. Future perturbation experiments will improve parameter identifiability and allow for testing model predictive power. Such a predictive model may aid in drug discovery for cell cycle-related disorders.


Assuntos
Descoberta de Drogas , Neurônios , Humanos , Animais , Divisão Celular , Ciclo Celular , Projetos de Pesquisa , Mamíferos
3.
J Cell Sci ; 137(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206091

RESUMO

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Animais , Ciclo Celular , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Mitose , Proteínas Cdc20/metabolismo , Mamíferos/metabolismo
4.
Interface Focus ; 12(4): 20210075, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35860005

RESUMO

Cell growth, DNA replication, mitosis and division are the fundamental processes by which life is passed on from one generation of eukaryotic cells to the next. The eukaryotic cell cycle is intrinsically a periodic process but not so much a 'clock' as a 'copy machine', making new daughter cells as warranted. Cells growing under ideal conditions divide with clock-like regularity; however, if they are challenged with DNA-damaging agents or mitotic spindle disrupters, they will not progress to the next stage of the cycle until the damage is repaired. These 'decisions' (to exit and re-enter the cell cycle) are essential to maintain the integrity of the genome from generation to generation. A crucial challenge for molecular cell biologists in the 1990s was to unravel the genetic and biochemical mechanisms of cell cycle control in eukaryotes. Central to this effort were biochemical studies of the clock-like regulation of 'mitosis promoting factor' during synchronous mitotic cycles of fertilized frog eggs and genetic studies of the switch-like regulation of 'cyclin-dependent kinases' in yeast cells. In this review, we uncover some secrets of cell cycle regulation by mathematical modelling of increasingly more complex molecular regulatory networks of cell cycle 'clocks' and 'switches'.

5.
Curr Biol ; 32(12): 2780-2785.e2, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35504285

RESUMO

In 1996, Kim Nasmyth1 proposed that the eukaryotic cell cycle is an alternating sequence of transitions from G1 to S-G2-M and back again. These two phases correlate to high activity of cyclin-dependent kinases (CDKs) that trigger S-G2-M events and CDK antagonists that stabilize G1 phase. We associated these "alternative phases" with the coexistence of two stable steady states of the biochemical reactions among CDKs and their antagonists.2,3 Transitions between these steady states (G1-to-S and M-to-G1) are driven by "helper" proteins. The fact that the transitions are irreversible is guaranteed by a "latching" property of the molecular switches, as we have argued in previous publications.4,5 Here, we show that if the latch is broken, then the biochemical reactions can swing back-and-forth across the transitions; either G1-S-G1-S … (periodic DNA replication without mitosis or cell division) or M-(G1)-M-(G1) … (periodic Cdc14 release, without fully exiting mitosis). Using mathematical modeling of the molecular control circuit in budding yeast, we provide a fresh account of aberrant cell cycles in mutant strains: endoreplication in the clb1-5Δ strain6 and periodic release and resequestration of Cdc14 (an "exit" phosphatase) in the CLB2kdΔ strain.7,8 In our opinion, these "endocycles" are not autonomous oscillatory modules that must be entrained by the CDK oscillator6,7 but rather inadvertent and deleterious oscillations that are normally suppressed by the CDK latching-gate mechanism.8.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Mitose , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
6.
Mol Biol Cell ; 32(9): 830-841, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33534609

RESUMO

Typically cells replicate their genome only once per division cycle, but under some circumstances, both natural and unnatural, cells synthesize an overabundance of DNA, either in a disorganized manner ("overreplication") or by a systematic doubling of chromosome number ("endoreplication"). These variations on the theme of DNA replication and division have been studied in strains of fission yeast, Schizosaccharomyces pombe, carrying mutations that interfere with the function of mitotic cyclin-dependent kinase (Cdk1:Cdc13) without impeding the roles of DNA-replication loading factor (Cdc18) and S-phase cyclin-dependent kinase (Cdk1:Cig2). Some of these mutations support endoreplication, and some overreplication. In this paper, we propose a dynamical model of the interactions among the proteins governing DNA replication and cell division in fission yeast. By computational simulations of the mathematical model, we account for the observed phenotypes of these re-replicating mutants, and by theoretical analysis of the dynamical system, we provide insight into the molecular distinctions between overreplicating and endoreplicating cells. In the case of induced overproduction of regulatory proteins, our model predicts that cells first switch from normal mitotic cell cycles to growth-controlled endoreplication, and ultimately to disorganized overreplication, parallel to the slow increase of protein to very high levels.


Assuntos
Biologia Computacional/métodos , Período de Replicação do DNA/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , DNA/metabolismo , Replicação do DNA , Modelos Teóricos , Fosforilação , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Curr Opin Cell Biol ; 69: 7-16, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33412443

RESUMO

As cells pass through each replication-division cycle, they must be able to postpone further progression if they detect any threats to genome integrity, such as DNA damage or misaligned chromosomes. Once a 'decision' is made to proceed, the cell unequivocally enters into a qualitatively different biochemical state, which makes the transitions from one cell cycle phase to the next switch-like and irreversible. Each transition is governed by a unique signalling network; nonetheless, they share a common characteristic of bistable behaviour, a hallmark of molecular memory devices. Comparing the cell cycle signalling mechanisms acting at the restriction point, G1/S, G2/M and meta-to-anaphase transitions, we deduce a generic network motif of coupled positive and negative feedback loops underlying each transition.


Assuntos
Células Eucarióticas , Transdução de Sinais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Células Eucarióticas/metabolismo
8.
Trends Cell Biol ; 30(7): 504-515, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362451

RESUMO

The driving passion of molecular cell biologists is to understand the molecular mechanisms that control important aspects of cell physiology, but this ambition is often limited by the wealth of molecular details currently known about these mechanisms. Their complexity overwhelms our intuitive notions of how molecular regulatory networks might respond under normal and stressful conditions. To make progress we need a new paradigm for connecting molecular biology to cell physiology. We suggest an approach that uses precise mathematical methods to associate the qualitative features of dynamical systems, as conveyed by 'bifurcation diagrams', with 'signal-response' curves measured by cell biologists.


Assuntos
Biologia Celular , Biologia Molecular , Ritmo Circadiano/fisiologia , Modelos Biológicos
9.
EMBO J ; 39(11): e104419, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32350921

RESUMO

Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Mitose , Proteína Fosfatase 2/metabolismo , Proteína Quinase CDC2/genética , Linhagem Celular , Ciclina A/genética , Ciclina B/genética , Humanos , Proteína Fosfatase 2/genética
10.
Curr Biol ; 30(4): 634-644.e7, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31928875

RESUMO

Most eukaryotic cells execute binary division after each mass doubling in order to maintain size homeostasis by coordinating cell growth and division. By contrast, the photosynthetic green alga Chlamydomonas can grow more than 8-fold during daytime and then, at night, undergo rapid cycles of DNA replication, mitosis, and cell division, producing up to 16 daughter cells. Here, we propose a mechanistic model for multiple-fission cycles and cell-size control in Chlamydomonas. The model comprises a light-sensitive and size-dependent biochemical toggle switch that acts as a sizer, guarding transitions into and exit from a phase of cell-division cycle oscillations. This simple "sizer-oscillator" arrangement reproduces the experimentally observed features of multiple-fission cycles and the response of Chlamydomonas cells to different light-dark regimes. Our model also makes specific predictions about the size dependence of the time of onset of cell division after cells are transferred from light to dark conditions, and we confirm these predictions by single-cell experiments. Collectively, our results provide a new perspective on the concept of a "commitment point" during the growth of Chlamydomonas cells and hint at intriguing similarities of cell-size control in different eukaryotic lineages.


Assuntos
Ciclo Celular/efeitos da radiação , Chlamydomonas reinhardtii/fisiologia , Luz , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/efeitos da radiação
11.
Elife ; 82019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31204999

RESUMO

The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase, there are ~250,000 nuclear cohesin complexes, of which ~ 160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Dosagem de Genes , Expressão Gênica , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromátides/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Recuperação de Fluorescência Após Fotodegradação/métodos , Fase G1/genética , Genoma Humano/genética , Células HeLa , Humanos , Espectrometria de Massas/métodos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Coesinas
12.
J Cell Biol ; 218(4): 1182-1199, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30674582

RESUMO

Spindle checkpoint signaling is initiated by recruitment of the kinase MPS1 to unattached kinetochores during mitosis. We show that CDK1-CCNB1 and a counteracting phosphatase PP2A-B55 regulate the engagement of human MPS1 with unattached kinetochores by controlling the phosphorylation status of S281 in the kinetochore-binding domain. This regulation is essential for checkpoint signaling, since MPS1S281A is not recruited to unattached kinetochores and fails to support the recruitment of other checkpoint proteins. Directly tethering MPS1S281A to the kinetochore protein Mis12 bypasses this regulation and hence the requirement for S281 phosphorylation in checkpoint signaling. At the metaphase-anaphase transition, MPS1 S281 dephosphorylation is delayed because PP2A-B55 is negatively regulated by CDK1-CCNB1 and only becomes fully active once CCNB1 concentration falls below a characteristic threshold. This mechanism prolongs the checkpoint-responsive period when MPS1 can localize to kinetochores and enables a response to late-stage spindle defects. By acting together, CDK1-CCNB1 and PP2A-B55 thus create a spindle checkpoint-permissive state and ensure the fidelity of mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimologia , Ciclina B1/metabolismo , Cinetocoros/enzimologia , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Ciclina B1/genética , Células HEK293 , Células HeLa , Humanos , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Epitélio Pigmentado da Retina/enzimologia , Transdução de Sinais , Fatores de Tempo
13.
Curr Biol ; 28(23): 3824-3832.e6, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449668

RESUMO

Distinct protein phosphorylation levels in interphase and M phase require tight regulation of Cdk1 activity [1, 2]. A bistable switch, based on positive feedback in the Cdk1 activation loop, has been proposed to generate different thresholds for transitions between these cell-cycle states [3-5]. Recently, the activity of the major Cdk1-counteracting phosphatase, PP2A:B55, has also been found to be bistable due to Greatwall kinase-dependent regulation [6]. However, the interplay of the regulation of Cdk1 and PP2A:B55 in vivo remains unexplored. Here, we combine quantitative cell biology assays with mathematical modeling to explore the interplay of mitotic kinase activation and phosphatase inactivation in human cells. By measuring mitotic entry and exit thresholds using ATP-analog-sensitive Cdk1 mutants, we find evidence that the mitotic switch displays hysteresis and bistability, responding differentially to Cdk1 inhibition in the mitotic and interphase states. Cdk1 activation by Wee1/Cdc25 feedback loops and PP2A:B55 inactivation by Greatwall independently contributes to this hysteretic switch system. However, elimination of both Cdk1 and PP2A:B55 inactivation fully abrogates bistability, suggesting that hysteresis is an emergent property of mutual inhibition between the Cdk1 and PP2A:B55 feedback loops. Our model of the two interlinked feedback systems predicts an intermediate but hidden steady state between interphase and M phase. This could be verified experimentally by Cdk1 inhibition during mitotic entry, supporting the predictive value of our model. Furthermore, we demonstrate that dual inhibition of Wee1 and Gwl kinases causes loss of cell-cycle memory and synthetic lethality, which could be further exploited therapeutically.


Assuntos
Ciclo Celular , Mitose , Ciclo Celular/genética , Células HeLa , Humanos , Interfase/genética , Mitose/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação
14.
PLoS Comput Biol ; 14(10): e1006548, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30356259

RESUMO

The size of a cell sets the scale for all biochemical processes within it, thereby affecting cellular fitness and survival. Hence, cell size needs to be kept within certain limits and relatively constant over multiple generations. However, how cells measure their size and use this information to regulate growth and division remains controversial. Here, we present two mechanistic mathematical models of the budding yeast (S. cerevisiae) cell cycle to investigate competing hypotheses on size control: inhibitor dilution and titration of nuclear sites. Our results suggest that an inhibitor-dilution mechanism, in which cell growth dilutes the transcriptional inhibitor Whi5 against the constant activator Cln3, can facilitate size homeostasis. This is achieved by utilising a positive feedback loop to establish a fixed size threshold for the Start transition, which efficiently couples cell growth to cell cycle progression. Yet, we show that inhibitor dilution cannot reproduce the size of mutants that alter the cell's overall ploidy and WHI5 gene copy number. By contrast, size control through titration of Cln3 against a constant number of genomic binding sites for the transcription factor SBF recapitulates both size homeostasis and the size of these mutant strains. Moreover, this model produces an imperfect 'sizer' behaviour in G1 and a 'timer' in S/G2/M, which combine to yield an 'adder' over the whole cell cycle; an observation recently made in experiments. Hence, our model connects these phenomenological data with the molecular details of the cell cycle, providing a systems-level perspective of budding yeast size control.


Assuntos
Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Tamanho Celular , Saccharomycetales , Sítios de Ligação , Biologia Computacional , Genoma Fúngico/fisiologia , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Saccharomycetales/citologia , Saccharomycetales/metabolismo , Saccharomycetales/fisiologia , Fatores de Transcrição
15.
Curr Opin Syst Biol ; 9: 22-31, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30221209

RESUMO

Well-nourished cells in a favorable environment (well supplied with growth factors, cytokines, and/or hormones and free from stresses, ionizing radiation, etc.) will grow, replicate their genome, and divide into two daughter cells, fully prepared to repeat the process. This cycle of DNA replication and division underlies all aspects of biological growth, reproduction, repair and development. As such, it is essential that the cell's genome be guarded against damage during the replication/division process, lest the error(s) be irrevocably passed down to all future generations of progeny. Hence, cell cycle progression is closely guarded against major sources of errors, in particular DNA damage and misalignment of replicated chromosomes on the mitotic spindle. In this review article we examine closely the molecular mechanisms that maintain genomic integrity during the cell division cycle, and we find an unexpected and intriguing arrangement of concatenated and nested bistable toggle switches. The topology of the network seems to play crucial roles in maintaining the stability of the genome during cell proliferation.

16.
Plant Physiol Biochem ; 126: 39-46, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499434

RESUMO

Ostreococcus tauri is the smallest free-living unicellular organism with one copy of each core cell cycle genes in its genome. There is a growing interest in this green algae due to its evolutionary origin. Since O. tauri is diverged early in the green lineage, relatively close to the ancestral eukaryotic cell, it might hold a key phylogenetic position in the eukaryotic tree of life. In this study, we focus on the regulatory network of its cell division cycle. We propose a mathematical modelling framework to integrate the existing knowledge of cell cycle network of O. tauri. We observe that feedback loop regulation of both G1/S and G2/M transitions in O. tauri is conserved, which can make the transition bistable. This is essential to make the transition irreversible as shown in other eukaryotic organisms. By performing sequence analysis, we also predict the presence of the Greatwall/PP2A pathway in the cell cycle of O. tauri. Since O. tauri cell cycle machinery is conserved, the exploration of the dynamical characteristic of the cell division cycle will help in further understanding the regulation of cell cycle in higher eukaryotes.


Assuntos
Clorófitas/metabolismo , Fase G1/fisiologia , Fase G2/fisiologia , Redes Reguladoras de Genes/fisiologia , Clorófitas/genética
17.
Proc Natl Acad Sci U S A ; 115(10): 2532-2537, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463760

RESUMO

Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation-quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.


Assuntos
Ciclo Celular , Proliferação de Células , Dano ao DNA , Modelos Biológicos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Técnicas de Inativação de Genes , Humanos , Mitógenos/genética , Mitógenos/metabolismo , Análise de Célula Única
18.
Cell Cycle ; 16(20): 1885-1892, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28902568

RESUMO

The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit, 1 and the mitotic checkpoint. 2 Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.


Assuntos
Mitose , Animais , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Modelos Biológicos
19.
Mol Biol Cell ; 28(23): 3437-3446, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28931595

RESUMO

The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called "checkpoints") if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a "feedback-amplified domineering substrate" (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Ciclo Celular/fisiologia , Proteína Quinase CDC2/metabolismo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Ciclina B/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Retroalimentação Fisiológica/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo
20.
Curr Biol ; 27(10): 1462-1476.e5, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28502659

RESUMO

In mammalian females, germ cells remain arrested as primordial follicles. Resumption of meiosis is heralded by germinal vesicle breakdown, condensation of chromosomes, and their eventual alignment on metaphase plates. At the first meiotic division, anaphase-promoting complex/cyclosome associated with Cdc20 (APC/CCdc20) activates separase and thereby destroys cohesion along chromosome arms. Because cohesion around centromeres is protected by shugoshin-2, sister chromatids remain attached through centromeric/pericentromeric cohesin. We show here that, by promoting proteolysis of cyclins and Cdc25B at the germinal vesicle (GV) stage, APC/C associated with the Cdh1 protein (APC/CCdh1) delays the increase in Cdk1 activity, leading to germinal vesicle breakdown (GVBD). More surprisingly, by moderating the rate at which Cdk1 is activated following GVBD, APC/CCdh1 creates conditions necessary for the removal of shugoshin-2 from chromosome arms by the Aurora B/C kinase, an event crucial for the efficient resolution of chiasmata.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos , Meiose , Animais , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase C/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas Cdc20/fisiologia , Proteínas Cdh1/metabolismo , Centrômero , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Centro Germinativo , Masculino , Camundongos , Camundongos Knockout , Modelos Teóricos , Separase/metabolismo , Fosfatases cdc25/fisiologia , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...