Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887909

RESUMO

Establishing scalable nanomaterials synthesis protocols remains a bottleneck towards their commercialisation and, thus, a topic of intense research and development. Herein, we present an automated machine-learning microfluidic platform capable of synthesising optically active nanomaterials from target spectra originating from prior experience, theorised or published. Implementing unsupervised Bayesian optimisation with Gaussian processes reduces the optimisation time and the need for prior knowledge to initiate the process. Using PTFE tubing and connectors enables facile change in reactor design. Ultimately, the platform substitutes the labour-intensive trial-and-error synthesis and provides a pathway to standardisation and volume synthesis, slowing down the translation and commercialisation of high-quality nanomaterials. As a proof-of-concept, Ag nanoplates and Prussian-blue nanoparticle protocols were optimised and validated for volume production.

2.
Sensors (Basel) ; 20(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007876

RESUMO

In this work, we investigate ethanol (EtOH)-sensing mechanisms of a ZnO nanorod (NRs)-based chemiresistor using a near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). First, the ZnO NRs-based sensor was constructed, showing good performance on interaction with 100 ppm of EtOH in the ambient air at 327 °C. Then, the same ZnO NRs film was investigated by NAP-XPS in the presence of 1 mbar oxygen, simulating the ambient air atmosphere and O2/EtOH mixture at the same temperature. The partial pressure of EtOH was 0.1 mbar, which corresponded to the partial pressure of 100 ppm of analytes in the ambient air. To better understand the EtOH-sensing mechanism, the NAP-XPS spectra were also studied on exposure to O2/EtOH/H2O and O2/MeCHO (MeCHO = acetaldehyde) mixtures. Our results revealed that the reaction of EtOH with chemisorbed oxygen on the surface of ZnO NRs follows the acetaldehyde pathway. It was also demonstrated that, during the sensing process, the surface becomes contaminated by different products of MeCHO decomposition, which decreases dc-sensor performance. However, the ac performance does not seem to be affected by this phenomenon.

3.
Nanoscale ; 12(24): 13055-13063, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32539056

RESUMO

Diamond optical centers have recently emerged as promising single-photon sources for quantum photonics. Particularly, negatively charged silicon vacancy (SiV-) centers show great promise due to their narrow zero-phonon emission line present also at room temperature. However, due to fabrication tolerances it is challenging to prepare directly photonic structures with optical modes spectrally matching the emission of SiV- centers. To reach the spectral overlap, photonic structures must typically undergo complicated post-processing treatment. In this work, suspended photonic crystal cavities made of polycrystalline diamond are engineered and more than 2.5-fold enhancement of the SiV- center zero-phonon line intensity via coupling to the cavity photonic mode is demonstrated. The intrinsic non-homogeneous thickness of the diamond thin layer within the sample is taken as an advantage that enables reaching the spectral overlap between the emission from SiV- centers and the cavity modes without any post-processing. Even with lower optical quality compared to monocrystalline diamond, the fabricated photonic structures show comparable efficiency for intensity enhancement. Therefore, the results of this work may open up a promising route for the application of polycrystalline diamond in photonics.

4.
RSC Adv ; 10(65): 39373-39384, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-35515371

RESUMO

One of the biggest challenges for the biomedical applications of cerium oxide nanoparticles (CeNPs) is to maintain their colloidal stability and catalytic activity as enzyme mimetics after nanoparticles enter the human cellular environment. This work examines the influences of CeNP surface properties on their colloidal stability and catalytic activity in cell culture media (CCM). Near-spherical CeNPs stabilized via different hydrophilic polymers were prepared through a wet-chemical precipitation method. CeNPs were stabilized via either electrostatic forces, steric forces, or a combination of both, generated by surface functionalization. CeNPs with electrostatic stabilization adsorb more proteins compared to CeNPs with only steric stabilization. The protein coverage further improves CeNPs colloidal stability in CCM. CeNPs with steric polymer stabilizations exhibited better resistance against agglomeration caused by the high ionic strength in CCM. These results suggest a strong correlation between CeNPs intrinsic surface properties and the extrinsic influences of the environment. The most stabilized sample in CCM is poly(acrylic acid) coated CeNPs (PAA-CeNPs), with a combination of both electrostatic and steric forces on the surface. It shows a hydrodynamic diameter of 15 nm while preserving 90% of its antioxidant activity in CCM. PAA-CeNPs are non-toxic to the osteoblastic cell line SAOS-2 and exhibit promising potential as a therapeutic alternative.

5.
Sci Rep ; 8(1): 11133, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042481

RESUMO

A composite of powders of semi-Heusler ferromagnetic shape memory and pure titanium was successfully prepared by spark plasma sintering at the temperature of 950 °C. Sintering resulted in the formation of small precipitates and intermetallic phases at the heterogeneous interfaces. Various complementary experimental methods were used to fully characterize the microstructure. Imaging methods including transmission and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed a position and chemical composition of individual intermetallic phases and precipitates. The crystalline structure of the phases was examined by a joint refinement of X-ray and neutron diffraction patterns. It was found that Co38Ni33Al29 decomposes into the B2-(Co,Ni)Al matrix and A1-(Co,Ni,Al) particles during sintering, while Al, Co and Ni diffuse into Ti forming an eutectic two phase structure with C9-Ti2(Co,Ni) precipitates. Complicated interface intermetallic structure containing C9-Ti2(Co,Ni), B2-(Co,Ni)Ti and L21-(Co,Ni)(Al,Ti) was completely revealed. In addition, C9-Ti2(Co,Ni) and A1-(Co,Ni,Al) precipitates were investigated by an advanced method of small angle neutron scattering. This study proves that powder metallurgy followed by spark plasma sintering is an appropriate technique to prepare bulk composites from very dissimilar materials.

6.
Nanomaterials (Basel) ; 8(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518968

RESUMO

In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel ß-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its ß-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.

7.
Toxicol Ind Health ; 31(5): 448-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-23406952

RESUMO

The aim of the study was to assess the effects of exposure to low doses of lead dissolved in drinking water (average daily dose of 2.2 mg kg(-1) day(-1)) on selected carbohydrate metabolism parameters in 20 wistar rats. Animals were divided into two groups - control (C) (group drinking clear water) and experimental group (Pb; group exposed to low doses of lead acetate in a concentration of 100 µmol l(-1) of drinking water). In this study, we studied the biochemical parameters (glucose, haemoglobin (Hb), glycated haemoglobin (HbA1c), lactate dehydrogenase (LDH) and amylase (AMS)) in rat blood. Glucose and Hb concentration and AMS activity decreased, LDH activity increased but HbA1c concentration levels did not change in rats exposed to lead. Our results well documented that lifetime exposure to lead affected carbohydrate metabolism of rats. Some parameters like concentration of Hb as well as activities of AMS and LDH are useful markers of intoxication of rats with lead. For the evaluation of results (e.g. AMS), not only the data at the end of the experiment should be taken into account but also the entire duration of trials (i.e. more time steps) that makes results more objective should be considered.


Assuntos
Metabolismo dos Carboidratos , Chumbo/toxicidade , Amilases/sangue , Animais , Glicemia/metabolismo , Relação Dose-Resposta a Droga , Água Potável/química , Hemoglobinas Glicadas/metabolismo , Hemoglobinas/metabolismo , L-Lactato Desidrogenase/sangue , Masculino , Ratos , Ratos Wistar
8.
J Toxicol Environ Health A ; 76(17): 1033-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24168039

RESUMO

The effects of long-term (1 yr) exposure to low doses of cadmium (Cd) dissolved in drinking water on selected biochemical and antioxidant parameters were studied in Wistar rats. Rats were divided into four groups: male control group (C-m), female control group (C-f), male Cd-exposed group (Cd-m), and female Cd-exposed group (Cd-f). Cd groups were exposed to Cd dissolved in drinking water (cadmium dichloride 4.8 mg CdCl2/L, i.e., 2.5 mg Cd/L, 500-fold of maximal allowable concentration for potable water). The experiment was terminated on d 370. In all groups, biochemical parameters (total protein [TP], albumin, alanine aminotransferase, aspartate aminotransferase, glucose, cholesterol, triacylglycerols, urea, and creatinine) and antioxidant parameters (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) were measured in the blood. Total protein and albumin concentrations were decreased significantly in the Cd-m group. Other biochemical parameters did not change in Cd groups compared to control groups. Superoxide dismutase fell significantly in both male and female Cd-exposed groups. Activity of glutathione peroxidase was markedly lower in Cd-exposed groups. Total antioxidant capacity increased significantly in Cd-f group. These results suggest that chronic low-dose oral Cd exposure induces oxidative stress.


Assuntos
Compostos de Cádmio/efeitos adversos , Alanina Transaminase/sangue , Animais , Antioxidantes/análise , Aspartato Aminotransferases/sangue , Glicemia/análise , Glicemia/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Cloreto de Cádmio/administração & dosagem , Cloreto de Cádmio/efeitos adversos , Compostos de Cádmio/administração & dosagem , Creatinina/sangue , Feminino , Glutationa/sangue , Masculino , Peroxidase/sangue , Ratos , Ratos Wistar , Albumina Sérica/análise , Albumina Sérica/efeitos dos fármacos , Superóxido Dismutase/sangue , Triglicerídeos/sangue
9.
Artigo em Inglês | MEDLINE | ID: mdl-22540644

RESUMO

The aim of the study was to assess the age dependence on some physiological and serum chemistry parameters of male Wistar rats for the estimation of reference values in controlled environment. We are presenting values obtained from a large number of animals such as survival, average life span, body mass, food and water intake, serum chemistry parameters as total protein, albumin, transferrin and ferritin in serum. One part of this work compares the relationship between rat and human age. The maximal life span of our rats was determined to be about 4.4 years. The average life span was 3.75 years. The body weight quickly rose to the 85th week of life and then remained in the range of about 640-660 g up to the 163rd week when it began to decline. Food intake rose from the beginning to the maximum of about 39 g in the 33rd week and then decreased to about 20 g in the 163rd week. The water intake had a similar dynamics (about 43 mL in the 33rd week and 33 mL in the 163rd week). Levels of total protein in serum increased with age, in contrast, albumin levels decreased. Transferrin and ferritin decreased to approximately the 160th week of life and then increased.


Assuntos
Fatores Etários , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...