Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7959): 73-78, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138109

RESUMO

In quantum materials, degeneracies and frustrated interactions can have a profound impact on the emergence of long-range order, often driving strong fluctuations that suppress functionally relevant electronic or magnetic phases1-7. Engineering the atomic structure in the bulk or at heterointerfaces has been an important research strategy to lift these degeneracies, but these equilibrium methods are limited by thermodynamic, elastic and chemical constraints8. Here we show that all-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize high-temperature ferromagnetism in YTiO3, a material that shows only partial orbital polarization, an unsaturated low-temperature magnetic moment and a suppressed Curie temperature, Tc = 27 K (refs. 9-13). The enhancement is largest when exciting a 9 THz oxygen rotation mode, for which complete magnetic saturation is achieved at low temperatures and transient ferromagnetism is realized up to Tneq > 80 K, nearly three times the thermodynamic transition temperature. We interpret these effects as a consequence of the light-induced dynamical changes to the quasi-degenerate Ti t2g orbitals, which affect the magnetic phase competition and fluctuations found in the equilibrium state14-20. Notably, the light-induced high-temperature ferromagnetism discovered in our work is metastable over many nanoseconds, underscoring the ability to dynamically engineer practically useful non-equilibrium functionalities.

2.
Science ; 364(6445): 1075-1079, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197010

RESUMO

Fluctuating orders in solids are generally considered high-temperature precursors of broken symmetry phases. However, in some cases, these fluctuations persist to zero temperature and prevent the emergence of long-range order. Strontium titanate (SrTiO3) is a quantum paraelectric in which dipolar fluctuations grow upon cooling, although a long-range ferroelectric order never sets in. Here, we show that optical excitation of lattice vibrations can induce polar order. This metastable polar phase, observed up to temperatures exceeding 290 kelvin, persists for hours after the optical pump is interrupted. Furthermore, hardening of a low-frequency vibration points to a photoinduced ferroelectric phase transition, with a spatial domain distribution suggestive of a photoflexoelectric coupling.

3.
Proc Natl Acad Sci U S A ; 115(48): 12148-12151, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429325

RESUMO

We use coherent midinfrared optical pulses to resonantly excite large-amplitude oscillations of the Si-C stretching mode in silicon carbide. When probing the sample with a second pulse, we observe parametric optical gain at all wavelengths throughout the reststrahlen band. This effect reflects the amplification of light by phonon-mediated four-wave mixing and, by extension, of optical-phonon fluctuations. Density functional theory calculations clarify aspects of the microscopic mechanism for this phenomenon. The high-frequency dielectric permittivity and the phonon oscillator strength depend quadratically on the lattice coordinate; they oscillate at twice the frequency of the optical field and provide a parametric drive for the lattice mode. Parametric gain in phononic four-wave mixing is a generic mechanism that can be extended to all polar modes of solids, as a means to control the kinetics of phase transitions, to amplify many-body interactions or to control phonon-polariton waves.

4.
Opt Lett ; 42(4): 663-666, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198834

RESUMO

We report on the generation of narrowband carrier-envelope phase stable mid-infrared (MIR) pulses between 10 and 15 µm. High pulse energies and narrow bandwidths are required for the selective nonlinear excitation of collective modes of matter that is not possible with current sources. We demonstrate bandwidths of <2% at 12.5 µm wavelength through difference frequency generation between two near-infrared (NIR) pulses, which are linearly chirped. We obtain a reduction in bandwidth by one order of magnitude, compared to schemes that make use of transform-limited NIR pulses. The wavelength of the narrowband MIR pulse can be tuned by changing the optical delay between the two chirped NIR pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...