Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917654

RESUMO

Multisite neural probes are a fundamental tool to study brain function. Hybrid silicon/polymer neural probes combine rigid silicon and flexible polymer parts into one single device and allow, for example, the precise integration of complex probe geometries, such as multishank designs, with flexible biocompatible cabling. Despite these advantages and benefiting from highly reproducible fabrication methods on both silicon and polymer substrates, they have not been widely available. This paper presents the development, fabrication, characterization, and in vivo electrophysiological assessment of a hybrid multisite multishank silicon probe with a monolithically integrated polyimide flexible interconnect cable. The fabrication process was optimized at wafer level, and several neural probes with 64 gold electrode sites equally distributed along 8 shanks with an integrated 8 µm thick highly flexible polyimide interconnect cable were produced. The monolithic integration of the polyimide cable in the same fabrication process removed the necessity of the postfabrication bonding of the cable to the probe. This is the highest electrode site density and thinnest flexible cable ever reported for a hybrid silicon/polymer probe. Additionally, to avoid the time-consuming bonding of the probe to definitive packaging, the flexible cable was designed to terminate in a connector pad that can mate with commercial zero-insertion force (ZIF) connectors for electronics interfacing. This allows great experimental flexibility because interchangeable packaging can be used according to experimental demands. High-density distributed in vivo electrophysiological recordings were obtained from the hybrid neural probes with low intrinsic noise and high signal-to-noise ratio (SNR).


Assuntos
Polímeros , Silício , Eletrodos , Fenômenos Eletrofisiológicos
2.
J Neurosci ; 39(19): 3640-3650, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30804096

RESUMO

Exposure to chronic stress leads to an array of anatomical, functional, and metabolic changes in the brain that play a key role in triggering psychiatric disorders such as depression. The hippocampus is particularly well known as a target of maladaptive responses to stress. To capture stress-induced changes in metabolic and functional connectivity in the hippocampus, stress-resistant (low-responders) or -susceptible (high-responders) rats exposed to a chronic unpredictable stress paradigm (categorized according to their hormonal and behavioral responses) were assessed by multimodal neuroimaging; the latter was achieved by using localized 1H MR spectroscopy and resting-state functional MRI (fMRI) at 11,7T data from stressed (n = 25) but also control (n = 15) male Wistar rats.Susceptible animals displayed increased GABA-glutamine (+19%) and glutamate-glutamine (+17%) ratios and decreased levels of macromolecules (-11%); these changes were positively correlated with plasma corticosterone levels. In addition, the neurotransmitter levels showed differential associations with functional connectivity between the hippocampus and the amygdala, the piriform cortex and thalamus between stress-resistant and -susceptible animals. Our observations are consistent with previously reported stress-induced metabolomic changes that suggest overall neurotransmitter dysfunction in the hippocampus. Their association with the fMRI data in this study reveals how local adjustments in neurochemistry relate to changes in the neurocircuitry of the hippocampus, with implications for its stress-associated dysfunctions.SIGNIFICANCE STATEMENT Chronic stress disrupts brain homeostasis, which may increase the vulnerability of susceptible individuals to neuropsychiatric disorders such as depression. Characterization of the differences between stress-resistant and -susceptible individuals on the basis of noninvasive imaging tools, such as magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI), contributes to improved understanding of the mechanisms underpinning individual differences in vulnerability and can facilitate the design of new diagnostic and intervention strategies. Using a combined functional MRI/MRS approach, our results demonstrate that susceptible- and non-susceptible subjects show differential alterations in hippocampal GABA and glutamate metabolism that, in turn, associate with changes in functional connectivity.


Assuntos
Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Descanso , Estresse Psicológico/psicologia
3.
Sci Rep ; 9(1): 1649, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733506

RESUMO

The continuous generation of new neurons in the adult mammalian hippocampus is a form of neural plasticity that modulates learning and memory functions, and also emotion (anxiety and depression). Among the factors known to modulate adult hippocampal neurogenesis and brain function, lipocalin-2 (LCN2) was recently described as a key regulator of neural stem cells (NSCs) proliferation and commitment, with impact on several dimensions of behaviour. Herein, we evaluated whether voluntary running, a well-known regulator of cell genesis, rescue the deficient adult hippocampal neurogenesis observed in mice lacking LCN2. We observed that running, by counteracting oxidative stress in NSCs, reverses LCN2-null mice defective hippocampal neurogenesis, as it promotes NSCs cell cycle progression and maturation, resulting in a partial reduction in anxiety and improved contextual behaviour. Together, these findings demonstrate that running is a positive modulator of adult hippocampal neurogenesis and behaviour in mice lacking LCN2, by impacting on the antioxidant kinetics of NSCs.


Assuntos
Comportamento Animal/fisiologia , Proliferação de Células , Hipocampo/citologia , Lipocalina-2/fisiologia , Células-Tronco Neurais/citologia , Neurogênese , Condicionamento Físico Animal/métodos , Animais , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/fisiologia
4.
Front Cell Neurosci ; 12: 463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534059

RESUMO

Neudesin (Neuron-derived neurotrophic factor, NENF), a membrane-associated progesterone receptor family (MAPR) member, is a neuron secreted protein with neurotrophic properties during embryonic stages. However, its role in the adult brain is still poorly addressed. In this study we have used neudesin-null (Nenf-/-) mice and performed a characterization of the proliferation state of the adult neurogenic niches, the adult subventricular zone (SVZ) and the hippocampus subgranular zone (SGZ). Nenf-/- males did not presented any deficits in proliferation in the SVZ neither in vivo nor in vitro. On the other hand a decrease in cell proliferation in the SGZ was observed, as well as a decrease in the number of newborn neurons in the dentate gyrus (DG) that was accompanied by impaired context discrimination in a contextual fear conditioning (CFC) task. Since NENF neurotrophic action is suggested to occur via the formation of a progesterone stability complex for the activation of non-genomic cascade, we further evaluated progesterone metabolism in the absence of NENF. Interestingly, expression of progesterone catabolic rate-determining enzyme, 5-α-reductase was upregulated in the DG of Nenf-/-, together with a significant increase in the expression of the δGABAA receptor gene, involved in DG tonic inhibition. Taken together, these findings add in vivo evidence on the neurotrophic properties of NENF in the adult brain. Furthermore, the mechanism of action of NENF in this process might implicate neurosteroids modulation, at least in the DG.

5.
Neurobiol Stress ; 6: 44-56, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28229108

RESUMO

Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans.

6.
Exp Neurol ; 289: 46-54, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27940019

RESUMO

The habenula is activated in response to stressful and aversive events, resulting in exploratory inhibition. Although possible mechanisms for habenula activation have been proposed, the effects of chronic stress on the habenular structure have never been studied. Herein, we assessed changes in volume, cell density and dendritic structure of habenular cells after chronic stress exposure using stereological and 3D morphological analysis. This study shows for the first time that there is a hemispherical asymmetry in the medial habenula (MHb) of the adult rat, with the right MHb containing more neurons than its left counterpart. Additionally, it shows that chronic stress induces a bilateral atrophy of both the MHb and the lateral habenula (LHb). This atrophy was accompanied by a reduction of the number of neurons in the right MHb and the number of glial cells in the bilateral LHb, but not by changes in the dendritic arbors of multipolar neurons. Importantly, these structural changes were correlated with elevated levels of serum corticosterone and increased anxious-like behavior in stressed animals. To further assess the role of the habenula in stress-related anxiety, bilateral lesions of the LHb were performed; interestingly, in lesioned animals the chronic stress protocol did not trigger increases in circulating corticosterone or anxious-like behavior. This study highlights the role of the habenula in the stress responses and how its sub-regions are structurally impacted by chronic stress with physiological and behavioral consequences.


Assuntos
Ansiedade/etiologia , Ansiedade/patologia , Habenula/patologia , Neurônios/patologia , Estresse Psicológico/complicações , Animais , Ansiedade/sangue , Doença Crônica , Corticosterona/sangue , Modelos Animais de Doenças , Eletrólise/efeitos adversos , Habenula/lesões , Masculino , Aprendizagem em Labirinto/fisiologia , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Ratos Wistar , Coloração pela Prata , Estatísticas não Paramétricas
7.
Biol Psychol ; 103: 158-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25196100

RESUMO

Alterations in hormone levels during aging impact on cognition and mood. Serum concentration levels of testosterone (TT), estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), dehydroepiandrosterone sulfate (DHEAS) and prolactin (PRL) were assessed in 120 community-dwellers (51+ years of age, males and females), in a cross-sectional approach. Performance clusters based on executive functioning (GENEXEC), memory (MEM), mood and well-being were obtained. In males, higher PRL levels associated with worse cognitive performance, lower well-being, and higher scores in depression scales, and lower E2 with poorer cognition and higher depressive mood. DHEAS positively associated with GENEXEC and MEM. Nutritional status significantly associated with PRL (positively) and with DHEAS (negatively). Findings indicate that besides the more exhaustively studied E2 and TT, variations in the levels of sex-related hormones such as PRL, FSH, LH and DHEAS are of interest for the mental health aging profile particularly in men.


Assuntos
Afeto , Cognição , Hormônios Esteroides Gonadais/sangue , Gonadotropinas Hipofisárias/sangue , Satisfação Pessoal , Fatores Sexuais , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Sulfato de Desidroepiandrosterona/sangue , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Hormônio Luteinizante/sangue , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Prolactina/sangue , Testosterona/sangue
8.
Front Behav Neurosci ; 7: 119, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058337

RESUMO

Neudesin (also known as neuron derived neurotrophic factor, Nenf) is a scarcely studied putative non-canonical neurotrophic factor. In order to understand its function in the brain, we performed an extensive behavioral characterization (motor, emotional, and cognitive dimensions) of neudesin-null mice. The absence of neudesin leads to an anxious-like behavior as assessed in the elevated plus maze (EPM), light/dark box (LDB) and novelty suppressed feeding (NSF) tests, but not in the acoustic startle (AS) test. This anxious phenotype is associated with reduced dopaminergic input and impoverished dendritic arborizations in the dentate gyrus granule neurons of the ventral hippocampus. Interestingly, shorter dendrites are also observed in the bed nucleus of the stria terminalis (BNST) of neudesin-null mice. These findings lead us to suggest that neudesin is a novel relevant player in the maintenance of the anxiety circuitry.

9.
Front Cell Neurosci ; 7: 122, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23908604

RESUMO

Lipocalin-2 (LCN2), an iron-related protein well described to participate in the innate immune response, has been shown to modulate spine morphology and to regulate neuronal excitability. In accordance, LCN2-null mice are reported to have stress-induced anxiety. Here we show that, under standard housing conditions, LCN2-null mice display anxious and depressive-like behaviors, as well as cognitive impairment in spatial learning tasks. These behavioral alterations were associated with a hyperactivation of the hypothalamic-pituitary-adrenal axis and with an altered brain cytoarchitecture in the hippocampus. More specifically, we found that the granular and pyramidal neurons of the ventral hippocampus, a region described to be associated with emotion, were hypertrophic, while neurons from the dorsal hippocampus, a region implicated in memory and cognition, were atrophic. In addition, LCN2-null mice presented synaptic impairment in hippocampal long-term potentiation. Whether the LCN2 effects are mediated through modulation of the level of corticosteroids or through a novel mechanism, the present observations bring further into light this immune-related protein as a player in the fine-tuning of behavior and of synaptic activity.

10.
Front Cell Neurosci ; 6: 34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907990

RESUMO

IN ADULT MAMMALS, UNDER PHYSIOLOGICAL CONDITIONS, NEUROGENESIS, THE PROCESS OF GENERATING NEW FUNCTIONAL NEURONS FROM PRECURSOR CELLS, OCCURS MAINLY IN TWO BRAIN AREAS: the subgranular zone in the dentate gyrus of the hippocampus, and the subventricular zone (SVZ) lining the walls of the brain lateral ventricles. Taking into account the location of the SVZ and the cytoarchitecture of this periventricular neural progenitor cell niche, namely the fact that the slow dividing primary progenitor cells (type B cells) of the SVZ extend an apical primary cilium toward the brain ventricular space which is filled with cerebrospinal fluid (CSF), it becomes likely that the composition of the CSF can modulate both self-renewal, proliferation and differentiation of SVZ neural stem cells. The major site of CSF synthesis is the choroid plexus (CP); quite surprisingly, however, it is still largely unknown the contribution of molecules specifically secreted by the adult CP as modulators of the SVZ adult neurogenesis. This is even more relevant in light of recent evidence showing the ability of the CP to adapt its transcriptome and secretome to various physiologic and pathologic stimuli. By giving particular emphasizes to growth factors and axonal guidance molecules we will illustrate how CP-born molecules might play an important role in the SVZ niche cell population dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...