Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1212854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900129

RESUMO

Background: The neuroendocrine control of ovulation is orchestrated by neuronal circuits that ultimately drive the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus to trigger the preovulatory surge in luteinizing hormone (LH) secretion. While estrogen feedback signals are determinant in triggering activation of GnRH neurons, through stimulation of afferent kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3VKISS1 neurons), many neuropeptidergic and classical neurotransmitter systems have been shown to regulate the LH surge. Among these, several lines of evidence indicate that the monoamine neurotransmitter serotonin (5-HT) has an excitatory, permissive, influence over the generation of the surge, via activation of type 2 5-HT (5-HT2) receptors. The mechanisms through which this occurs, however, are not well understood. We hypothesized that 5-HT exerts its influence on the surge by stimulating RP3VKISS1 neurons in a 5-HT2 receptor-dependent manner. Methods: We tested this using kisspeptin neuron-specific calcium imaging and electrophysiology in brain slices obtained from male and female mice. Results: We show that exogenous 5-HT reversibly increases the activity of the majority of RP3VKISS1 neurons. This effect is more prominent in females than in males, is likely mediated directly at RP3VKISS1 neurons and requires activation of 5-HT2 receptors. The functional impact of 5-HT on RP3VKISS1 neurons, however, does not significantly vary during the estrous cycle. Conclusion: Taken together, these data suggest that 5-HT2 receptor-mediated stimulation of RP3VKISS1 neuron activity might be involved in mediating the influence of 5-HT on the preovulatory LH surge.


Assuntos
Kisspeptinas , Área Pré-Óptica , Camundongos , Feminino , Masculino , Animais , Área Pré-Óptica/metabolismo , Kisspeptinas/metabolismo , Serotonina/farmacologia , Neurônios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores de Serotonina , Neurotransmissores
2.
Sci Total Environ ; 854: 158685, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108835

RESUMO

The majority of the carbon stored in seagrass sediments originates outside the meadow, such that the carbon storage capacity within a meadow is strongly dependent on hydrodynamic conditions that favor deposition and retention of fine organic matter within the meadow. By extension, if hydrodynamic conditions vary across a meadow, they may give rise to spatial gradients in carbon. This study considered whether the spatial gradients in sediment and carbon accretion rates correlated with the spatial variation in hydrodynamic intensity within a single meadow. Field measurements were conducted in three depth zones across a Zostera marina L. (eelgrass) meadow in Nahant Harbor, Massachusetts. Four sediment cores were collected in each zone, including one outside the meadow (control) and three within the meadow at increasing distances from the nearest meadow edge. Sedimentation and carbon accretion rates were estimated by combining the measurements of dry bulk density, organic carbon fraction (%OC), 210Pb, and 226Ra. Tilt current meters measured wave velocities within each zone, which were used to estimate turbulent kinetic energy (TKE). Both sediment and carbon accretion rates exhibited spatial heterogeneity across the meadow, which were correlated with the spatial variation in near-bed TKE. Specifically, both accretion rates increased with decreasing TKE, which was consistent with diminished resuspension associated with lower TKE. A method is proposed for using spatial gradients in hydrodynamic intensity to improve the estimation of total meadow accretion rates.

3.
Endocrinology ; 165(2)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38170643

RESUMO

There is considerable evidence that synchronized activity within a reciprocally connected population of cells in the arcuate nucleus (ARC) coexpressing kisspeptin, neurokinin B (NKB), and dynorphin (KNDy cells) is crucial for the generation of gonadotrophin-releasing hormone (GnRH) pulses in mammals. The initial "KNDy hypothesis" proposed that pulsatile GnRH secretion is elicited by episodic kisspeptin release from KNDy cells following synchronized activation and termination of the population by NKB and dynorphin, respectively. Since then, the role of KNDy cells as a critical component of the pulse generator has been further supported by studies at the single-cell level, demonstrating that the population is both necessary and sufficient for pulsatility. In addition, there have been considerable modifications and expansion of the original hypothesis, including work demonstrating the critical role of glutamate in synchronization of the KNDy cell network, functional interactions with other ARC subpopulations, and the existence of species differences in the role of dynorphin in pulse generation. Here we review these recent changes and discuss how the translation of these findings has led to the development of new therapies for disorders related to pulse generation. We also outline critical gaps in knowledge that are currently limiting the application of KNDy research in the clinic, particularly regarding the role of dynorphin in pulse generation in primates.


Assuntos
Dinorfinas , Hormônio Liberador de Gonadotropina , Animais , Kisspeptinas , Hipotálamo , Núcleo Arqueado do Hipotálamo , Neurocinina B , Neurônios , Mamíferos
4.
Environ Pollut ; 303: 119108, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259472

RESUMO

Microplastics have been discovered ubiquitously in marine environments. While their accumulation is noted in seagrass ecosystems, little attention has yet been given to microplastic impacts on seagrass plants and their associated epiphytic and sediment communities. We initiate this discussion by synthesizing the potential impacts microplastics have on relevant seagrass plant, epiphyte, and sediment processes and functions. We suggest that microplastics may harm epiphytes and seagrasses via impalement and light/gas blockage, and increase local concentrations of toxins, causing a disruption in metabolic processes. Further, microplastics may alter nutrient cycling by inhibiting dinitrogen fixation by diazotrophs, preventing microbial processes, and reducing root nutrient uptake. They may also harm seagrass sediment communities via sediment characteristic alteration and organism complications associated with ingestion. All impacts will be exacerbated by the high trapping efficiency of seagrasses. As microplastics become a permanent and increasing member of seagrass ecosystems it will be pertinent to direct future research towards understanding the extent microplastics impact seagrass ecosystems.


Assuntos
Microplásticos , Plásticos , Ecossistema
5.
Sci Total Environ ; 812: 151481, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752877

RESUMO

Seagrass meadows worldwide provide valuable ecosystem services but have experienced sharp declines in recent decades. This rapid loss has prompted numerous restoration efforts with variable levels of success, often depending on the suitability of the restoration sites. The selection of sites can be guided by simple habitat suitability models driven with environmental variables deemed critical to the successful growth of new transplants. Habitat suitability models typically consider the influence of bathymetry, sediment type, salinity, wave exposure, and water quality. However, they typically do not explicitly include benthic exposure to ultraviolet (UV) and commonly use depth as a coarse proxy for photosynthetically active radiation (PAR). Benthic exposure to UV and PAR are both key parameters for habitat suitability but can be challenging to determine, especially in coastal environments influenced by rivers and tides where they are extremely variable. Here, we demonstrate the development of a simple but effective model of spectrally-resolved benthic solar irradiance for a dynamic marsh-influenced mesotidal estuary in Massachusetts. In-situ measurements were used to develop and validate an empirical model predicting the UV-visible vertical diffuse attenuation coefficient spectra of downwelling irradiance, Kd(λ), from simple physical parameters about tides, river discharge and location. Spectral benthic solar irradiances (280-700 nm) were calculated hourly for 3 years (2017-2019) using modeled and validated cloud-corrected surface downwelling irradiances, estimates of water depth, and the modeled Kd(λ) spectra. The mapped irradiances were used to provide improved seagrass habitat suitability maps that will guide future restoration efforts in the estuary. We expect the approach presented here can be adapted to other dynamic coastal environments influenced by tides and rivers and/or applied to other light-dependent organisms and biogeochemical processes.


Assuntos
Ecossistema , Rios , Estuários , Salinidade , Qualidade da Água
6.
PeerJ ; 5: e2972, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265496

RESUMO

Global declines in coastal foundation species highlight the importance of effective restoration. In this study, we examined the effects of source population identity and diversity (one vs. three sources per plot) on seagrass (Zostera marina) transplant success. The field experiment was replicated at two locations in Massachusetts with adjacent natural Zostera marina beds to test for local adaptation and source diversity effects on shoot density. We also collected morphological and genetic data to characterize variation within and among source populations, and evaluate whether they were related to performance. Transplants grew and expanded until six months post-transplantation, but then steadily declined at both sites. Prior to declines, we observed variation in performance among source populations at one site that was related to morphological traits: the populations with the longest leaves had the highest shoot densities, whereas the population with the shortest leaves performed the worst at six months post-transplantation. In addition, multiple source plots at this same transplant site consistently had similar or higher shoot densities than single source plots, and shoots from weak-performing populations showed improved performance in multiple source plots. We found no evidence for home site advantage or benefits of population-level genetic variation in early transplant performance at either site. Our results show limited effects of source population on early transplant performance and suggest that factors (e.g., morphology) other than home site advantage and population genetic variation serve a role. Based on our overall findings that transplant success varied among source populations and that population diversity at the plot level had positive but limited effects on individual and plot performance, we support planting shoots from multiple source sites in combination to enhance transplant success, particularly in the absence of detailed information on individual source characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...