Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 47(4): 663-673, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025032

RESUMO

Intensive tillage, low-residue crops, and a warm, humid climate have contributed to soil organic carbon (SOC) loss in the southeastern Coastal Plains region. Conservation (CnT) tillage and winter cover cropping are current management practices to rebuild SOC; however, there is sparse long-term field data showing how these management practices perform under variable climate conditions. The objectives of this study were to use CQESTR, a process-based C model, to simulate SOC in the top 15 cm of a loamy sand soil (fine-loamy, kaolinitic, thermic Typic Kandiudult) under conventional (CvT) or CnT tillage to elucidate the impact of projected climate change and crop yields on SOC relative to management and recommend the best agriculture management to increase SOC. Conservation tillage was predicted to increase SOC by 0.10 to 0.64 Mg C ha for six of eight crop rotations compared with CvT by 2033. The addition of a winter crop [rye ( L.) or winter wheat ( L.)] to a corn ( L.)-cotton ( L.) or corn-soybean [ (L.) Merr.] rotation increased SOC by 1.47 to 2.55 Mg C ha. A continued increase in crop yields following historical trends could increase SOC by 0.28 Mg C ha, whereas climate change is unlikely to have a significant impact on SOC except in the corn-cotton or corn-soybean rotations where SOC decreased up to 0.15 Mg C ha by 2033. The adoption of CnT and cover crop management with high-residue-producing corn will likely increase SOC accretion in loamy sand soils. Simulation results indicate that soil C saturation may be reached in high-residue rotations, and increasing SOC deeper in the soil profile will be required for long-term SOC accretion beyond 2030.


Assuntos
Carbono , Mudança Climática , Solo/química , Agricultura , Monitoramento Ambiental
2.
J Environ Qual ; 46(2): 411-419, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28380572

RESUMO

Biochar has been proposed as an amendment to remediate mine land soils; however, it could be advantageous and novel if feedstocks local to mine land sites were used for biochar production. Two different feedstocks (pine beetle-killed lodgepole pine [] and tamarisk [ spp.]), within close proximity to mine land-affected soils, were used to create biochars to determine if they have the potential to reduce metal bioavailability. Four different mine land soils, contaminated with various amounts of Cd, Cu, Pb, and Zn, received increasing amounts of biochar (0, 5, 10, and 15% by wt). Soil pH and metal bioavailability were determined, and the European Community Bureau of Reference (BCR) sequential extraction procedure was used to identify pools responsible for potential shifts in bioavailability. Increasing biochar application rates caused increases in soil pH (initial, 3.97; final, 7.49) and 55 to 100% (i.e., no longer detectable) decreases in metal bioavailability. The BCR procedure supported the association of Cd with carbonates, Cu and Zn with oxyhydroxides and carbonates, and Pb with oxyhydroxides; these phases were likely responsible for the reduction in heavy metal bioavailability. This study proved that both of these feedstocks local to abandoned mining operations could be used to create biochars and reduce heavy metal bioavailability in mine land soils.


Assuntos
Carvão Vegetal , Metais Pesados/química , Poluentes do Solo/química , Solo
3.
J Environ Manage ; 192: 271-280, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183027

RESUMO

New value-added uses for solid municipal waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that soil deficiencies can be remedied by the application of municipal waste-based biochars. Select municipal organic wastes (newspaper, cardboard, woodchips and landscaping residues) individually or in a 25% blend of all four waste streams were used as feedstocks of biochars. Three sets of pyrolysis temperatures (350, 500, and 750 °C) and 3 sets of pyrolysis residence time (2, 4 and 6 h) were used for biochar preparation. The biochar yield was in the range of 21-62% across all feedstocks and pyrolysis conditions. We observed variations in key biochar properties such as pH, electrical conductivity, bulk density and surface area depending on the feedstocks and production conditions. Biochar increased soil pH and improved its electrical conductivity, aggregate stability, water retention and micronutrient contents. Similarly, leachate from the soil amended with biochar showed increased pH and electrical conductivity. Some elements such as Ca and Mg decreased while NO3-N increased in the leachates of soils incubated with biochars. Overall, solid waste-based biochar produced significant improvements to soil fertility parameters indicating that solid municipal wastes hold promising potential as feedstocks for manufacturing value-added biochars with varied physicochemical characteristics, allowing them to not only serve the needs for solid waste management and greenhouse gas mitigation, but also as a resource for improving the quality of depleted soils.


Assuntos
Solo/química , Resíduos Sólidos , Sequestro de Carbono , Carvão Vegetal/química , Temperatura , Gerenciamento de Resíduos
4.
Environ Monit Assess ; 188(5): 288, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27075313

RESUMO

The concentration of 17ß-estradiol (E2) was measured through stages of wastewater treatment at a central Illinois wastewater treatment plant (WWTP). E2 concentration was quantified using a competitive enzyme-linked immunosorbent assay (ELISA). The concentration of E2 was compared with demographic effects of a university; physical parameters of the wastewater (dissolved oxygen, pH, and temperature); and daily influent and effluent flow rates. Effluent concentrations ranged from 0 to 25.3 ng L(-1) with an average discharge of 3.6 ng L(-1). E2 concentration was shown to increase at the start of each university semester; however, this trend was not observed in the summer sessions. Low influent and effluent flow rates, which correspond to increased water retention time at the WWTP, were correlated to increased removal efficiency of E2, where low flow was linked to 91 % removal efficiency and high flow with 58 % removal efficiency. This study concludes that E2 was being discharged at concentrations known to cause ecological risk, and that the demographic changes in a university student body had a significant effect on E2 concentration throughout the treatment process.


Assuntos
Monitoramento Ambiental , Estradiol/análise , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Demografia , Saúde Ambiental , Ensaio de Imunoadsorção Enzimática , Estrogênios/análise , Etinilestradiol/análise , Illinois , Águas Residuárias/análise , Águas Residuárias/estatística & dados numéricos
5.
Chemosphere ; 145: 135-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26688249

RESUMO

Although an increase in soil fertility is the most frequently reported benefit linked to adding biochar to soils, there is still a need to pursue additional research that will improve our understanding on the impact of soil fertility enhancement because the effect could vary greatly between switchgrass (Panicum virgatum, L) residues (USG) and switchgrass biochars (SG). We hypothesized that SG with supplemental nitrogen (N) would deliver more positive effects on carbon (C) and N mineralization than USG. The objective of this study was to evaluate the effects of USG and SG, with or without supplemental inorganic N fertilizer on C and N mineralization in highly weathered Coastal Plain Ultisols. The application rate for SG and USG based on a corn yield goal of 112 kg ha(-1) was 40 Mg ha(-1). Inorganic N was added at the rate of 100 kg N ha(-1), also based on a corn yield of 7.03 tons ha(-1). Experimental treatments were: control (CONT) soil; control with N (CONT + N); switchgrass residues (USG); USG with N (USG + N); switchgrass biochars at 250 °C (250SG); SG at 250 °C with N (250SG + N); SG at 500 °C (500SG); and SG at 500 °C with N (500SG + N). Cumulative and net CO2-C evolution was increased by the additions of SG and USG especially when supplemented with N. Soils treated with 250SG (8.6 mg kg(-1)) had the least concentration of total inorganic nitrogen (TIN) while the greatest amount of TIN was observed from the CONT + N (19.0 mg kg(-1)). Our results suggest that application of SG in the short term may cause N immobilization resulting in the reduction of TIN.


Assuntos
Carbono/química , Carvão Vegetal/química , Fertilizantes/análise , Nitrogênio/química , Panicum/química , Solo/química , North Carolina , Solo/normas , Tempo (Meteorologia) , Zea mays/crescimento & desenvolvimento
6.
Chemosphere ; 142: 184-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26077798

RESUMO

In a proof-of-concept study, an acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 °C) and steam activation (800 °C) to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0%, 1%, 2%, and 10% (by wt.) and soils were destructively sampled at 1, 2, 3, 4, 5, and 6 month intervals. Soil was analyzed for gravimetric water content, pH, NO3-N, plant-available Fe, Zn, Mn, Cu, and P, organic C, CO2 respiration, and microbial enumeration via extractable DNA and 16S rRNA gene copies. Gravimetric soil water content increased with biochar application regardless of rate, as compared to the control. Soil pH decreased between 0.2 and 0.4 units, while plant-available Zn, Mn, and P increased with increasing biochar application rate. Micronutrient availability decreased over time likely due to insoluble mineral species precipitation. Increasing biochar application raised the soil organic C content and remained elevated over time. Increasing biochar application rate also increased respired CO2, yet the CO2 released decreased over time. Soil NO3-N concentrations significantly decreased with increasing biochar application rate likely due to microbial immobilization or denitrification. Depending on application rate, biochar produced a 1.4 to 2.1-fold increase in soil DNA extracted and 1.4- to 2.4-fold increase in 16S rRNA gene abundance over control soils, suggesting microbial stimulation and a subsequent burst of activity upon biochar addition. Our results showed that there is promise in designing a biochar to improve the quality and water relations of eroded calcareous soils.


Assuntos
Carbonato de Cálcio/análise , Carvão Vegetal/química , Solo/química , Fenômenos Químicos , Concentração de Íons de Hidrogênio , Microbiologia do Solo
7.
Chemosphere ; 142: 136-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26145507

RESUMO

Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool predicting the impact of biochar additions on soil saturated hydraulic conductivity (Ksat). Four different kinds of biochar were added to four different textured soils (coarse sand, fine sand, loam, and clay texture) to assess these effects at the rates of 0%, 1%, 2%, and 5% (w/w). The Ksat of the biochar amended soils were significantly influenced by the rate and type of biochar, as well as the original particle size of soil. The Ksat decreased when biochar was added to coarse and fine sands. Biochar with larger particles sizes (60%; >1 mm) decreased Ksat to a larger degree than the smaller particle size biochar (60%; <1 mm) in the two sandy textured soils. Increasing tortuosity in the biochar amended sandy soil could explain this behavior. On the other hand, for the clay loam 1% and 2% biochar additions universally increased the Ksat with higher biochar amounts providing no further alterations. The developed model utilizes soil texture pedotransfer functions for predicting agricultural soil Ksat as a function of soil texture. The model accurately predicted the direction of the Ksat influence, even though the exact magnitude still requires further refinement. This represents the first step to a unified theory behind the impact of biochar additions on soil saturated conductivity.


Assuntos
Carvão Vegetal/química , Solo/química , Agricultura , Biomassa , Tamanho da Partícula , Permeabilidade
8.
Chemosphere ; 142: 92-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26025669

RESUMO

In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to direct manure application are composting and thermochemical conversion which can destroy pathogens and improve handling and storage. The effect of four forms of swine manure-based soil amendments (raw, compost, hydrochar, and pyrochar) on soil fertility and leachate water quality characteristics of a sandy soil were investigated in soil incubation experiments. All four amendments significantly increased soil carbon, cation exchange capacity and available nutrient contents of the soil. However, hydrochar amended soil leached lower amounts of N, P, and K compared to the other amendments including the control. On the other hand, pyrochar amended soil leached higher concentrations of P and K. Subsequent tests on the hydrochar for K and N adsorption isotherms and surface analysis via XPS suggested that these nutrients were not sorbed directly to the hydrochar surface. Although it is still not clear how these nutrients were retained in the soil amended with hydrochar, it suggests a great potential for hydrochar as an alternative manure management option as the hydrochar can be soil applied while minimizing potential environmental issues from the leaching of high nutrient concentrations to water bodies.


Assuntos
Esterco , Solo/química , Suínos , Qualidade da Água , Adsorção , Animais , Esterco/análise , Reciclagem , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
9.
Chemosphere ; 142: 176-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26112657

RESUMO

In the Coastal Plains region of the United States, the hard setting subsoil layer of Norfolk soils results in low water holding capacity and nutrient retention, which often limits root development. In this region, the Norfolk soils are under intensive crop production that further depletes nutrients and reduces organic carbon (C). Incorporation of pyrolyzed organic residues or "biochars" can provide an alternative recalcitrant C source. However, biochar quality and effect can be inconsistent and different biochars react differently in soils. We hypothesized that addition of different designer biochars will have variable effects on biomass and nutrient uptake of winter wheat. The objective of this study was to investigate the effects of designer biochars on biomass productivity and nutrient uptake of winter wheat (Triticum aestivum L.) in a Norfolk's hard setting subsoil layer. Biochars were added to Norfolk's hard setting subsoil layer at the rate of 40 Mg ha(-1). The different sources of biochars were: plant-based (pine chips, PC); animal-based (poultry litter, PL); 50:50 blend (50% PC:50% PL); 80:20 blend (80% PC:20% PL); and hardwood (HW). Aboveground and belowground biomass and nutrient uptake of winter wheat varied significantly (p⩽0.0001) with the different designer biochar applications. The greatest increase in the belowground biomass of winter wheat over the control was from 80:20 blend of PC:PL (81%) followed by HW (76%), PC (59%) and 50:50 blend of PC:PL (9%). However, application of PL resulted in significant reduction of belowground biomass by about 82% when compared to the control plants. The average uptake of P, K, Ca, Mg, Na, Al, Fe, Cu and Zn in both the aboveground and belowground biomass of winter wheat varied remarkably with biochar treatments. Overall, our results showed promising significance for the treatment of a Norfolk's hard setting subsoil layer since designer biochars did improve both aboveground/belowground biomass and nutrient uptake of winter wheat.


Assuntos
Biomassa , Carvão Vegetal/farmacologia , Solo/química , Triticum/efeitos dos fármacos , Triticum/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Carvão Vegetal/química , Pinus/química , Aves Domésticas , Triticum/crescimento & desenvolvimento
10.
Chemosphere ; 142: 168-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26116317

RESUMO

Biochar application is an emerging management option to increase soil fertility. Biochars could improve chemical properties of soils with hard setting subsoil layer. However, biochar effect can be inconsistent because different biochars react differently in soils. We hypothesized that addition of designer biochars will have variable effects on improving the chemical properties of hard setting layers. The objective of this study was to investigate the effects of biochars on soil properties in Norfolk's soil with a hard setting subsoil layer grown with winter wheat (Triticum aestivum L.). All designer biochars were added at the rate of 40 Mg ha(-1). Feedstocks used for biochars production were: plant-based (pine chips, 100% PC); animal-based (poultry litter, 100% PL); 50:50 blend (50% PC:50% PL); 80:20 blend (80% PC:20% PL); and hardwood (100% HW). Higher nutrient availability was found after additions of biochars especially additions of 100% PL and 50:50 blend of PC and PL. On the average, applications of 100% PL and 50:50 blend of PC:PL had the greatest amount of soil total nitrogen with means of 1.94±0.3% and 1.44±0.3%, respectively. When compared with the control and other biochars, 50:50 blend of PC:PL additions resulted in increase of 669% for P, 830% for K, 307% for Ca, 687% for Mg and 2315% for Na while application of 100% PL increased the concentration of extractable P, K, Ca, Mg, and Na by 363%, 1349%, 152%, 363%, and 3152%, respectively. Overall, our results showed promising significance since biochars did improve chemical properties of a Norfolk's soil.


Assuntos
Carvão Vegetal/química , Solo/química , Animais , Pinus/química , Aves Domésticas , Triticum/crescimento & desenvolvimento , Estados Unidos
11.
Chemosphere ; 103: 313-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24397887

RESUMO

Biochar produced during pyrolysis has the potential to enhance soil fertility and reduce greenhouse gas emissions. The influence of biochar properties (e.g., particle size) on both short- and long-term carbon (C) mineralization of biochar remains unclear. There is minimal information on the potential effects of biochar particle sizes on their breakdowns by soil microorganism, so it is unknown if the particle size of biochar influences C mineralization rate and/or stability in soils. In order to evaluate the effect of different sources (BS) and particle sizes (BF) of biochar on C loss and/or stability in soils, an incubation study on C mineralization of different biochar sources and particle sizes was established using two soils (ST): Norfolk soil (fine loamy, kaolinitic, thermic, typic Kandiudults) and Coxville soil (fine loamy kaolinitic, thermic, Paleaquults). In separate incubation vessels, these soils were amended with one of two manure-based biochars (poultry litters, PL; swine solids, SS) or one of two lignocellulosic-based biochars (switchgrass, SG; pine chips, PC) which were processed into two particle sizes (dust, <0.42 mm; pellet, >2 mm). The amount of CO2 evolved varied significantly between soils (p≤0.0001); particle sizes (p≤0.0001) and the interactions of biochar source (p≤0.001) and forms of biochars (p≤0.0001) with soil types. Averaged across soils and sources of biochar, CO2-C evolved from dust-sized biochar (281 mg kg(-1)) was significantly higher than pellet-sized biochar (226 mg kg(-1)). Coxville soils with SS biochar produced the greatest average CO2-C of 428 mg kg(-1) and Norfolk soils with PC had the lowest CO2-C production (93 mg kg(-1)). Measured rates of carbon mineralization also varied with soils and sources of biochar (Norfolk: PL>SS>SG≥PC; Coxville: PC>SG>SS>PL). The average net CO2-C evolved from the Coxville soils (385 mg kg(-1)) was about threefold more than the CO2-C evolved from the Norfolk soils (123 mg kg(-1)). Our results suggest different particle sizes and sources of biochar as well as soil type influence biochar stability.


Assuntos
Carbono/química , Carvão Vegetal , Esterco , Minerais/química , Solo/química , Animais , Temperatura Alta , Tamanho da Partícula , Aves Domésticas , Suínos
12.
J Environ Qual ; 41(4): 1123-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751054

RESUMO

The use of biochar has received growing attention because of its ability to improve the physicochemical properties of highly weathered Ultisols and Oxisols, yet very little research has focused on its effects in Aridisols. We investigated the effect of low or high temperature (250 or 500°C) pyrolyzed switchgrass () biochar on two Aridisols. In a pot study, biochar was added at 2% w/w to a Declo loam (Xeric Haplocalcids) or to a Warden very fine sandy loam (Xeric Haplocambids) and incubated at 15% moisture content (by weight) for 127 d; a control (no biochar) was also included. Soils were leached with 1.2 to 1.3 pore volumes of deionized HO on Days 34, 62, 92, and 127, and cumulative leachate Ca, K, Mg, Na, P, Cu, Fe, Mn, Ni, Zn, NO-N, NO-N, and NH-N concentrations were quantified. On termination of the incubation, soils were destructively sampled for extractable Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Zn, NO-N, and NH-N, total C, inorganic C, organic C, and pH. Compared with 250°C, the 500°C pyrolysis temperature resulted in greater biochar surface area, elevated pH, higher ash content, and minimal total surface charge. For both soils, leachate Ca and Mg decreased with the 250°C switchgrass biochar, likely due to binding by biochar's functional group sites. Both biochars caused an increase in leachate K, whereas the 500°C biochar increased leachate P. Both biochars reduced leachate NO-N concentrations compared with the control; however, the 250°C biochar reduced NO-N concentrations to the greatest extent. Easily degradable C, associated with the 250°C biochar's structural make-up, likely stimulated microbial growth, which caused NO-N immobilization. Soil-extractable K, P, and NO-N followed a pattern similar to the leachate observations. Total soil C content increases were linked to an increase in organic C from the biochars. Cumulative results suggest that the use of switchgrass biochar prepared at 250°C could improve environmental quality in calcareous soil systems by reducing nutrient leaching potential.


Assuntos
Carvão Vegetal/química , Panicum/química , Solo/química , Minerais/química , Água
13.
J Environ Qual ; 41(4): 1150-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751057

RESUMO

Excessive Cu concentrations in water systems can negatively affect biological systems. Because Cu can form strong associations with organic functional groups, we examined the ability of biochar (an O-C-enriched organic bioenergy by-product) to sorb Cu from solution. In a batch experiment, KOH steam-activated pecan shell biochar was shaken for 24 h in pH 6, 7, 8, or 9 buffered solutions containing various Cu concentrations to identify the effect of pH on biochar Cu sorption. Afterward, all biochar solids from the 24-h shaking period were air-dried and analyzed using X-ray absorption fine structure (XAFS) spectroscopy to determine solid-phase Cu speciation. In a separate batch experiment, biochar was shaken for 30 d in pH 6 buffered solution containing increasing Cu concentrations; the Cu sorption maximum was calculated based on the exponential rise to a maximum equation. Biochar sorbed increasing amounts of Cu as the solution pH decreased from 9 to 6. The XAFS spectroscopy revealed that Cu was predominantly sorbed onto a biochar organic phase at pH 6 in a molecular structure similar to Cu adsorbed on model humic acid (Cu-humic acid [HA]). The XAFS spectra at pH 7, 8, and 9 suggested that Cu was associated with the biochar as three phases: (i) a complex adsorbed on organic ligands similar to Cu-HA, (ii) carbonate phases similar to azurite (Cu(CO)(OH)), and (iii) a Cu oxide phase like tenorite (CuO). The exponential rise equation fit to the incubated samples predicted a Cu sorption maximum of 42,300 mg Cu kg. The results showed that KOH steam-activated pecan shell biochar could be used as a material for sorbing excess Cu from water systems, potentially reducing the negative effects of Cu in the environment.


Assuntos
Carvão Vegetal/química , Cobre/química , Vapor , Adsorção , Animais , Carya , Bovinos , Indústria de Laticínios , Concentração de Íons de Hidrogênio , Hidróxidos , Compostos de Potássio , Sementes , Espectroscopia por Absorção de Raios X
15.
Ecotoxicology ; 17(6): 485-94, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18389370

RESUMO

Clapper rails (Rallus longirostris) were used as an indicator species of estuarine marsh habitat quality because of their strong site fidelity and predictable diet consisting of mostly benthic organisms. Mercury (Hg) and the polychlorinated biphenyl (PCB) Aroclor 1268 concentrations were determined for sediments, crabs, as well as clapper rail adults and chicks collected from salt marshes associated with the LCP Superfund site in Brunswick, Georgia. Home ranges were established for adult rails, and sediment and crab samples were taken from each individual's range. The study was designed to minimize the spatial variability associated with trophic transfer studies by choosing an endpoint species with a potentially small home range and specifically sampling its foraging range. The mean home range for clapper rails was 1.2 ha with a median of 0.28 ha. Concentrations of Hg and Aroclor 1268 were shown to increase with each trophic level. Transfer factors between media followed the same pattern for both contaminants with the highest between fiddler crabs and clapper rail liver. Hg and PCB transfer factors were similar between sediment to fiddler crab and fiddler crab to muscle, however the PCB transfer factor from fiddler crabs to liver was over twice as large as for Hg. PCB congener profiles did not significantly differ between media types.


Assuntos
Arocloros/farmacocinética , Aves/fisiologia , Braquiúros/metabolismo , Monitoramento Ambiental/métodos , Poluentes Ambientais/farmacocinética , Compostos de Mercúrio/farmacocinética , Animais , Arocloros/análise , Disponibilidade Biológica , Ecossistema , Poluentes Ambientais/análise , Feminino , Cadeia Alimentar , Sedimentos Geológicos/química , Georgia , Fígado/química , Fígado/metabolismo , Masculino , Compostos de Mercúrio/análise , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Óvulo/química , Óvulo/metabolismo
16.
J Environ Qual ; 36(3): 790-800, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17412914

RESUMO

The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export.


Assuntos
Desastres , Ecossistema , Fezes/química , Fósforo/química , Rios , Clima Tropical , Gerenciamento de Resíduos , Animais , Conservação dos Recursos Naturais , Monitoramento Ambiental , Suínos , Poluentes Químicos da Água/química , Poluição da Água
17.
J Environ Qual ; 35(6): 1975-82, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17071865

RESUMO

A close relationship has been reported between sediment organic C (SedOC) content and its P sorption capacity (P(max)) and total P (TP) concentration. Phosphorus sorbed to organically complexed cations is a proposed explanation for this relationship. The objectives of this study were (i) to determine relationships between in-stream wetland SedOC content and both the sediment's P(max) and TP concentrations, and (ii) to ascertain the role of both organically complexed and oxalate-extractable cations on the sediment P(max) and TP values. The sediment's oxalate-extractable Fe (Fe(ox)) and Al (Al(ox)) contents were determined using acidified ammonium oxalate, while sodium pyrophosphate was used to extract organically complexed cations (Al(pryo), Ca(pyro), Fe(pyro), Mg(pyro), and Mn(pyro)). Both the sediment's P(max) and TP contents were strongly correlated with its SedOC concentration (r(2) > 0.90, P < 0.001). Only the Al(ox) contents were significantly correlated with TP and P(max), suggesting that amorphous Al forms have an important role in P sorption. All five pyrophosphate-extracted cations were significantly correlated with SedOC contents. Regression analyses showed that the Al(pyro) accounted for 88% of the variation in sediment P(max) values, whereas a combination of Al(pyro) and Ca(pyro) accounted for 98% of the variation in sediment TP concentrations. Additionally, Al and Ca chelated by SedOC compounds also have an important role in P binding and indicate that a linkage exists between the wetlands SedOC and P(max) content and its ability to accumulate TP. This study identified that two different mechanisms have significant roles in regulating P sorption by sediments in a southeastern Coastal Plain in-stream wetland.


Assuntos
Difosfatos/química , Sedimentos Geológicos/química , Oxalatos/química , Fósforo/química , Rios/química , Poluentes Químicos da Água , Adsorção , Cátions , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Metais/análise , Metais/química , Solubilidade , Movimentos da Água
18.
J Dent Res ; 85(7): 648-52, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16798867

RESUMO

Gingival inflammation and alveolar bone resorption are hallmarks of adult periodontitis, elicited in response to oral micro-organisms such as Porphyromonas gingivalis. We hypothesized that omega (omega)-3 fatty acids (FA) dietary supplementation would modulate inflammatory reactions leading to periodontal disease in infected rats. Rats were fed fish oil (omega-3 FA) or corn oil (n-6 FA) diets for 22 weeks and were infected with P. gingivalis. Rats on the omega-3 FA diet exhibited elevated serum levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), documenting diet-induced changes. PCR analyses demonstrated that rats were orally colonized by P. gingivalis; increased IgG antibody levels substantiated this infection. P. gingivalis-infected rats treated with omega-3 FA had significantly less alveolar bone resorption. These results demonstrated the effectiveness of an omega-3 FA-supplemented diet in modulating alveolar bone resorption following P. gingivalis infection, and supported that omega-3 FA may be a useful adjunct in the treatment of periodontal disease.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/uso terapêutico , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/microbiologia , Análise de Variância , Animais , Infecções por Bacteroidaceae/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos/sangue , Feminino , Porphyromonas gingivalis/isolamento & purificação , Radiografia , Ratos , Ratos Sprague-Dawley
19.
Environ Monit Assess ; 112(1-3): 35-52, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16404533

RESUMO

Levels of 18 elements, including lead, mercury, selenium, and uranium, were examined in three species of snakes from an exposed and reference site on the Department of Energy's Savannah River Site in South Carolina. We tested the hypotheses that there were no differences as a function of species, and there were no difference between the exposed and control site for blood and muscle (tail) samples for banded water snake (Nerodia fasciata), brown water snake (N. taxispilota) and cotton mouth (Akistrodon piscivorous). The banded water snakes collected were significantly smaller than the other two species. For blood, there were significant species differences only for barium, copper, selenium, uranium and zinc, while for muscle tissue there were significant interspecific differences in aluminum, arsenic, barium, cobalt, cesium, copper, iron, lead, mercury, manganese, strontium, vanadium and zinc, suggesting that muscle tissue in the tail is a better indicator of potential interspecific differences. It is also easier logistically to collect tail tissue than blood. Where one species had significantly higher levels than the other species in muscle tissue levels, cottonmouth had higher levels of five elements (aluminum, cobalt, lead, mercury, vanadium), brown water snake had two (lead, strontium), and banded water snake had only barium. There were few significant differences between the control and reference site for levels of blood, but several for muscle tissue. All three species had significantly higher levels of arsenic and manganese at Tim's Branch than the reference site, and nickel and uranium were significantly higher for banded water snake and cotton mouth, the larger species. Individuals with high exposure of one element were exposed to high levels of other elements.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/metabolismo , Músculo Esquelético/metabolismo , Serpentes/metabolismo , Animais , Ecossistema , Metais Pesados/análise , Metais Pesados/sangue , Músculo Esquelético/química , South Carolina , Especificidade da Espécie , Distribuição Tecidual
20.
J Environ Qual ; 34(5): 1820-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16151234

RESUMO

The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.


Assuntos
Compostos de Alúmen/química , Água Doce/análise , Fósforo/química , Solo/análise , Purificação da Água/métodos , Agricultura/métodos , Análise de Variância , Condutividade Elétrica , Concentração de Íons de Hidrogênio , North Carolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...