Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 68: 68-85, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537366

RESUMO

Cheap and renewable feedstocks such as the one-carbon substrate formate are emerging for sustainable production in a growing chemical industry. We investigated the acetogen Acetobacterium woodii as a potential host for bioproduction from formate alone and together with autotrophic and heterotrophic co-substrates by quantitatively analyzing physiology, transcriptome, and proteome in chemostat cultivations in combination with computational analyses. Continuous cultivations with a specific growth rate of 0.05 h-1 on formate showed high specific substrate uptake rates (47 mmol g-1 h-1). Co-utilization of formate with H2, CO, CO2 or fructose was achieved without catabolite repression and with acetate as the sole metabolic product. A transcriptomic comparison of all growth conditions revealed a distinct adaptation of A. woodii to growth on formate as 570 genes were changed in their transcript level. Transcriptome and proteome showed higher expression of the Wood-Ljungdahl pathway during growth on formate and gaseous substrates, underlining its function during utilization of one-carbon substrates. Flux balance analysis showed varying flux levels for the WLP (0.7-16.4 mmol g-1 h-1) and major differences in redox and energy metabolism. Growth on formate, H2/CO2, and formate + H2/CO2 resulted in low energy availability (0.20-0.22 ATP/acetate) which was increased during co-utilization with CO or fructose (0.31 ATP/acetate for formate + H2/CO/CO2, 0.75 ATP/acetate for formate + fructose). Unitrophic and mixotrophic conversion of all substrates was further characterized by high energetic efficiencies. In silico analysis of bioproduction of ethanol and lactate from formate and autotrophic and heterotrophic co-substrates showed promising energetic efficiencies (70-92%). Collectively, our findings reveal A. woodii as a promising host for flexible and simultaneous bioconversion of multiple substrates, underline the potential of substrate co-utilization to improve the energy availability of acetogens and encourage metabolic engineering of acetogenic bacteria for the efficient synthesis of bulk chemicals and fuels from sustainable one carbon substrates.


Assuntos
Acetobacterium , Acetatos , Acetobacterium/genética , Fermentação , Formiatos
2.
Bioresour Technol ; 323: 124573, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360948

RESUMO

In this study, the impact of gas composition (i.e. CO, CO2 and H2 partial pressures) on CO2 utilization, growth, and acetate production was investigated in batch and continuous cultures of A. woodii. Based on an industrial blast furnace gas, H2 blending was used to study the impact of H2 availability on CO2 fixation alone and together with CO using idealized gas streams. With H2 available as an additional energy source, net CO2 fixation and CO, CO2 and H2 co-utilization was achieved in gas-limited fermentations. Using industrial blast furnace gas, up to 15.1 g l-1 acetate were produced in continuous cultures. Flux balance analysis showed that intracellular fluxes and total ATP production were dependent on the availability of H2 and CO. Overall, H2 blending was shown to be a suitable control strategy for gas fermentations and demonstrated that A. woodii is an interesting host for CO2 fixation from industrial gas streams.


Assuntos
Acetobacterium , Dióxido de Carbono , Fermentação , Hidrogênio
3.
J Ind Microbiol Biotechnol ; 47(12): 1117-1132, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33068182

RESUMO

The aim of this study was to establish isobutanol production on chemically defined medium in Escherichia coli. By individually expressing each gene of the pathway, we constructed a plasmid library for isobutanol production. Strain screening on chemically defined medium showed successful production in the robust E. coli W strain, and expression vector IB 4 was selected as the most promising construct due to its high isobutanol yields and efficient substrate uptake. The investigation of different aeration strategies in combination with strain improvement and the implementation of a pulsed fed-batch were key for the development of an efficient production process. E. coli W ΔldhA ΔadhE Δpta ΔfrdA enabled aerobic isobutanol production at 38% of the theoretical maximum. Use of cheese whey as raw material resulted in longer process stability, which allowed production of 20 g l-1 isobutanol. Demonstrating isobutanol production on both chemically defined medium and a residual waste stream, this study provides valuable information for further development of industrially relevant isobutanol production processes.


Assuntos
Butanóis , Escherichia coli , Engenharia Metabólica , Queijo , Meios de Cultura/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Plasmídeos , Soro do Leite/metabolismo
4.
Biotechnol Biofuels ; 13: 177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110446

RESUMO

BACKGROUND: Acetate is an abundant carbon source and its use as an alternative feedstock has great potential for the production of fuel and platform chemicals. Acetoin and 2,3-butanediol represent two of these potential platform chemicals. RESULTS: The aim of this study was to produce 2,3-butanediol and acetoin from acetate in Escherichia coli W. The key strategies to achieve this goal were: strain engineering, in detail the deletion of mixed-acid fermentation pathways E. coli W ΔldhA ΔadhE Δpta ΔfrdA 445_Ediss and the development of a new defined medium containing five amino acids and seven vitamins. Stepwise reduction of the media additives further revealed that diol production from acetate is mediated by the availability of aspartate. Other amino acids or TCA cycle intermediates did not enable growth on acetate. Cultivation under controlled conditions in batch and pulsed fed-batch experiments showed that aspartate was consumed before acetate, indicating that co-utilization is not a prerequisite for diol production. The addition of aspartate gave cultures a start-kick and was not required for feeding. Pulsed fed-batches resulted in the production of 1.43 g l-1 from aspartate and acetate and 1.16 g l-1 diols (2,3-butanediol and acetoin) from acetate alone. The yield reached 0.09 g diols per g acetate, which accounts for 26% of the theoretical maximum. CONCLUSION: This study for the first time showed acetoin and 2,3-butanediol production from acetate as well as the use of chemically defined medium for product formation from acetate in E. coli. Hereby, we provide a solid base for process intensification and the investigation of other potential products.

5.
FEMS Microbiol Lett ; 365(20)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239700

RESUMO

A broad range of different chemical and pharmaceutical compounds have been produced in microbial cell factories. To compete with traditional crude oil based production processes, the use of complex alternative raw materials such as lignocellulosic biomass, waste streams and utilization of CO2 in gas fermentations has been suggested. All of these streams contain acetate, a cheap and potentially interesting carbon source for microbial production processes. Acetate (co-)utilization remains challenging, which is the reason for extensive research on the use of acetate for the production of value-added compounds. For industrial implementation of microbial conversion processes using acetate as a feedstock gaining a deeper insight into acetate metabolism of microorganisms is essential. Systems level analyses and manipulation of potential host organisms should be applied to achieve full utilization of this prospective substrate.


Assuntos
Acetatos/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Meios de Cultura/química , Microbiologia Industrial/métodos , Biotecnologia/métodos , Biotransformação , Carbono/metabolismo , Metabolismo Energético , Biologia de Sistemas/métodos , Tecnologia Farmacêutica/métodos
6.
Microb Cell Fact ; 17(1): 109, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986728

RESUMO

BACKGROUND: Due to its high stress tolerance and low acetate secretion, Escherichia coli W is reported to be a good production host for several metabolites and recombinant proteins. However, simultaneous co-utilization of glucose and other substrates such as acetate remains a challenge. The activity of acetyl-CoA-synthetase, one of the key enzymes involved in acetate assimilation is tightly regulated on a transcriptional and post-translational level. The aim of this study was to engineer E. coli W for overexpression of an acetylation insensitive acetyl-CoA-synthetase and to characterize this strain in batch and continuous cultures using glucose, acetate and during co-utilization of both substrates. RESULTS: Escherichia coli W engineered to overexpress an acetylation-insensitive acetyl-CoA synthetase showed a 2.7-fold increase in acetate uptake in a batch process containing glucose and high concentrations of acetate compared to a control strain, indicating more efficient co-consumption of glucose and acetate. When acetate was used as the carbon source, batch duration could significantly be decreased in the overexpression strain, possibly due to alleviation of acetate toxicity. Chemostat cultivations with different dilution rates using glucose revealed only minor differences between the overexpression and control strain. Accelerostat cultivations using dilution rates between 0.20 and 0.70 h-1 indicated that E. coli W is naturally capable of efficiently co-utilizing glucose and acetate over a broad range of specific growth rates. Expression of acetyl-CoA synthetase resulted in acetate and glucose accumulation at lower dilution rates compared to the control strain. This observation can possibly be attributed to a higher ratio between acs and pta-ackA in the overexpression strain as revealed by gene expression analysis. This would result in enhanced energy dissipation caused by an imbalance in the Pta-AckA-Acs cycle. Furthermore, yjcH and actP, genes co-transcribed with acetyl-CoA synthetase showed significant down-regulation at elevated dilution rates. CONCLUSIONS: Escherichia coli W expressing an acetylation-insensitive acetyl-CoA synthetase was shown to be a promising candidate for mixed feed processes using glucose and acetate. Comparison between batch and continuous cultures revealed distinct differences in glucose-acetate co-utilization behavior, requiring additional investigations such as multi-omics analysis and further engineering towards even more efficient co-utilization strains of E. coli W.


Assuntos
Acetato-CoA Ligase/biossíntese , Acetatos/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Acetato-CoA Ligase/genética , Acetilação , Técnicas de Cultura Celular por Lotes , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Processamento de Proteína Pós-Traducional , Proteômica , Proteínas Recombinantes/biossíntese
7.
Bioresour Technol ; 242: 287-294, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28412146

RESUMO

The aim of the current work was to convert an acetate-rich hemicellulose liquid fraction (LF) from hot-water extraction of Betula pendula to oils for biodiesel, with Rhodosporidium toruloides. The toxicity of acetate was circumvented by biological detoxification with an isolated alkali-tolerant and acetate-resistant Bacillus sp. strain. Removal of other lignocellulose-derived inhibitors, such as furfural and phenols, was evaluated by two strategies; an activated carbon (AC) treatment of the undiluted LF, and dilution of the LF by 25% (0.75LF) and 50%. (0.50LF). The bacterium consumed most of the acetic acid in 6-8days in the treated or diluted media, which were subsequently used for cultivation of the yeast, for conversion of sugars to oils. The oil concentration reached 2.8 and 1.8g/L, in the AC LF and 0.75LF medium, respectively. In comparison, the oil accumulation in the same media without prior cultivation of Bacillus sp. was 0.86 and 0.03g/L, respectively.


Assuntos
Bacillus , Basidiomycota , Lipídeos , Madeira , Ácido Acético , Álcalis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...