Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 2): 126694, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673150

RESUMO

The following article provides an insight into the production of chitosan aerogels as potential materials for tissue engineering. Chitosan aerogels were prepared following two different protocols: formation in ethanol and formation in sodium hydroxide in an ethanol solution. The main objective was to apply a new route to obtain chitosan aerogels with no external cross-linkers and compare the mentioned preparation approaches. Forming chitosan aerogels in ethanol implies a simple, environmentally friendly, and efficient method. The prepared materials showed specific surface areas of up to 450 m2/g, highly porous networks and great mechanical properties. In vitro degradation studies revealed high stability for up to 10 weeks. The differences between the samples were significant. While the chitosan aerogels prepared in ethanol showed superior textural, morphological and mechanical properties, the chitosan aerogels prepared in the sodium hydroxide solution proved that a considerable influence on end properties could be made simply by adjusting the ageing medium. In vitro cell analysis with primary human osteoblasts showed good biocompatibility and pointed towards the potential use of these aerogels for orthopedic applications. This testing showed further that adjustments in structural properties by sodium hydroxide also come with a cost regarding their suitability to host bone cells.


Assuntos
Quitosana , Humanos , Quitosana/farmacologia , Quitosana/química , Géis/química , Etanol , Hidróxido de Sódio , Osteoblastos
2.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850144

RESUMO

This review provides a concise overview of up-to-date developments in the processing of neat poly(lactic acid) (PLA), improvement in its properties, and preparation of advanced materials using a green medium (CO2 under elevated pressure). Pressurized CO2 in the dense and supercritical state is a superior alternative medium to organic solvents, as it is easily available, fully recyclable, has easily tunable properties, and can be completely removed from the final material without post-processing steps. This review summarizes the state of the art on PLA drying, impregnation, foaming, and particle generation by the employment of dense and supercritical CO2 for the development of new materials. An analysis of the effect of processing methods on the final material properties was focused on neat PLA and PLA with an addition of natural bioactive components. It was demonstrated that CO2-assisted processes enable the control of PLA properties, reduce operating times, and require less energy compared to conventional ones. The described environmentally friendly processing techniques and the versatility of PLA were employed for the preparation of foams, aerogels, scaffolds, microparticles, and nanoparticles, as well as bioactive materials. These PLA-based materials can find application in tissue engineering, drug delivery, active food packaging, compostable packaging, wastewater treatment, or thermal insulation, among others.

3.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679286

RESUMO

Wound-dressing materials often include other materials stimulating wound healing. This research describes the first formulation of biodegradable hybrid aerogels composed of polylactic acid and pectin. The prepared hybrid material showed a highly porous structure with a surface area of 166 ± 22.6 m2·g-1. The addition of polylactic acid may have decreased the surface area of the pure pectin aerogel, but it improved the stability of the material in simulated body fluid (SBF). The pure pectin aerogel showed a high swelling and degradation ratio after 3 h. The addition of the polylactic acid prolonged its stability in the simulated body fluid from 24 h to more than one week, depending on the amount of polylactic acid. Biodegradable aerogels were loaded with indomethacin and diclofenac sodium as model drugs. The entrapment efficiencies were 63.4% and 62.6% for indomethacin and diclofenac sodium, respectively. Dissolution of both drugs was prolonged up to 2 days. Finally, sodium percarbonate and calcium peroxide were incorporated into the bioaerogels as chemical oxygen sources, to evaluate oxygen generation for potential wound healing applications.

4.
Gels ; 8(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35877523

RESUMO

This review discusses the most commonly employed methods for determining pore size and pore size distribution in bioaerogels. Aerogels are materials with high porosity and large surface areas. Most of their pores are in the range of mesopores, between 2 and 50 nm. They often have smaller or larger pores, which presents a significant challenge in determining the exact mean pore size and pore size distribution in such materials. The precision and actual value of the pore size are of considerable importance since pore size and pore size distribution are among the main properties of aerogels and are often directly connected with the final application of those materials. However, many recently published papers discuss or present pore size as one of the essential achievements despite the misinterpretation or the wrong assignments of pore size determination. This review will help future research and publications evaluate the pore size of aerogels more precisely and discuss it correctly. The study covers methods such as gas adsorption, from which BJH and DFT models are often used, SEM, mercury porosimetry, and thermoporometry. The methods are described, and the results obtained are discussed. The following paper shows that there is still no precise method for determining pore size distribution or mean pore size in aerogels until now. Knowing that, it is expected that this field will evolve in the future.

5.
Polymers (Basel) ; 14(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745974

RESUMO

In this research, ethyl cellulose films were prepared by a simple, easy, controlled one-pot method using either ethanol or ethyl lactate as solvents, the films being formed at 6 °C. Titanium dioxide nanoparticles were incorporated to improve the oxygen transmission and water vapour transmission rates of the obtained films. This method used no plasticizers, and flexible materials with good mechanical properties were obtained. The resulting solvent-free and transparent ethyl cellulose films exhibited good mechanical properties and unique free-shapable properties. The obtained materials had similar properties to those reported in the literature, where plasticizers were incorporated into ethyl cellulose films with an elastic modulus of 528 MPa. Contact angles showed the hydrophobic nature of all the prepared materials, with contact angles between 80 and 108°. Micrographs showed the smooth surfaces of the prepared samples and porous intersections with honeycomb-like structures. The oxygen and water vapor transmission rates were the lowest for the ethyl cellulose films prepared in ethyl lactate, these being 615 cm3·m-2·day-1 and 7.8 gm-2·day-1, respectively, showing that the films have promise for food packaging applications.

6.
Polymers (Basel) ; 13(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204041

RESUMO

The presented study shows the possibility of using bioaerogels, namely neat alginate, pectin, chitosan aerogels, and alginate and pectin aerogels coated with chitosan, as drug delivery systems for esomeprazole. Two different techniques were used for the impregnation of esomeprazole: Supercritical impregnation, and diffusion via ethanol during the sol-gel synthesis. The prepared samples were characterized by employing N2 adsorption-desorption analysis, TGA/DSC, and FTIR. The achieved loadings were satisfactory for all the tested samples and showed to be dependent on the technique used for impregnation. In all cases, higher loadings were achieved when impregnation via diffusion from ethanol was used. Extensive release studies were performed for all impregnated samples. The in vitro dissolution profiles were found to be dependent on the carrier and impregnation method used. Most importantly, in all cases more controlled and delayed release was achieved with the bioaerogels compared to using pure esomeprazole.

7.
ACS Omega ; 5(14): 7987-8000, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309709

RESUMO

Prednisolone, an important active pharmaceutical ingredient, is a synthetic glucocorticoid used for the preparation of various pharmaceutical products with anti-inflammatory and immunosuppressive properties. It is a challenge in high-performance liquid chromatography (HPLC) to separate the prednisolone peak and its structurally related substance (hydrocortisone), which only differs in a double bond at the C-1 position. Successful application of the HPLC method according to the European Pharmacopoeia monograph for related substances of prednisolone is very often limited to the chromatographic system available. This is due to the nonbaseline separation of the prednisolone and hydrocortisone peaks, which is strongly influenced by the instrument parameters and the chosen C18 column. First, an adjusted European Pharmacopoeia method for related substances of prednisolone was developed within the allowable adjustments. Next, an improved stability-indicating reversed-phase HPLC method for related substances of prednisolone was developed and validated for use in quality control laboratories for routine analysis. The optimized separation was performed on a Phenomenex Gemini C18 column (150 mm × 4.6 mm, 3 µm) using a gradient mobile-phase system consisting of acetonitrile/tetrahydrofuran/water (15:10:75 v/v/v), acetonitrile/water (80:20 v/v), and ultraviolet detection at 254 nm. A baseline separation was achieved, and stability indicating capability was demonstrated by a forced degradation study. A full validation procedure was performed in accordance with International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines.

8.
Molecules ; 25(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155739

RESUMO

The following study describes the preparation of pectin aerogels and pectin aerogels coated with an external layer of chitosan. For the preparation of chitosan-coated pectin aerogels, a modified coating procedure was employed. Since pectin as well as pectin aerogels are highly water soluble, a function of chitosan coating is to slow down the dissolution of pectin and consequently the release of the active substances. Textural properties, surface morphologies, thermal properties, and functional groups of prepared aerogels were determined. Results indicated that the coating procedure affected the textural properties of pectin aerogels, resulting in smaller specific surface areas of 276 m2/g, compared to 441 m2/g. However, chitosan-coated pectin aerogels still retained favorable properties for carriers of active substances. The case study for prepared aerogels was conducted with curcumin. Prior to in-vitro release studies, swelling studies were performed. Curcumin's dissolution from both aerogels showed to be successful. Pectin aerogels released curcumin in 3 h showing a burst release profile. Chitosan-coated pectin aerogels prolonged curcumin release up to 24 h, thus showing a controlled release profile.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Géis/química , Pectinas/química , Fenômenos Químicos , Técnicas de Química Sintética , Curcumina/administração & dosagem , Géis/síntese química , Análise Espectral , Termogravimetria
9.
J Hazard Mater ; 386: 121632, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31753662

RESUMO

Rare earth elements are widely used in chemical engineering, the nuclear industry, metallurgy, medicine, electronics, and computer technology because of their unique properties. To fulfil ever increasing demands for these elements, recycling of rare-earth-element-containing products as well as their recovery from wastewater is quite important. In order to recover rare earth elements from wastewater, their adsorption from low-concentration aqueous solutions, by using nanomaterials, is investigated due to technological simplicity and high efficiency. This paper is a review of the state-of-the-art adsorption technologies of rare earth elements from diluted aqueous solutions by using various nanomaterials. Furthermore, desorption and reusability of rare earth metals and nanomaterials are discussed. On the basis of this review it can be concluded that laboratory testing indicates promising adsorption capacities, which depend significantly on nanomaterial type and adsorption conditions. The adsorption process, which mostly follows the Langmuir, Freundlich, Sips, and Temkin isotherms, is typically endothermic and spontaneous. Furthermore, pseudo-second order, pseudo-first order, and intra-particle diffusion models are the best models to describe the kinetics of adsorption. The dominant adsorption mechanisms are surface complexation and ion exchange. More investigation, however, will be required in order to synthesize appropriate, environmentally friendly, and efficient nanomaterials for adsorption of rare earth elements from real wastewater.

10.
Sci Rep ; 9(1): 16492, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712716

RESUMO

Hybrid aerogels based on polysaccharides - silica were prepared and characterized. Tetramethylorthosilicate (TMOS) was used as inorganic precursor and various polysaccharides (alginate, pectin, xanthan and guar) were used as organic precursors. TMOS was added to polysaccharide aqueous solutions, resulting in stable wet gels. There were no additional chemicals or cross-linkers in the process. Produced wet gels were dried under supercritical conditions with CO2 in order to preserve their structure. The nitrogen adsorption results were compared to pure polysaccharide aerogels, prepared in our previous research. It is shown, that the addition of silica to pectin, xanthan, alginate and guar significantly improved their structural properties, primarily seen in the drastic increase of the surface area. Guar-silica aerogels reached the highest surface area of 679 m2 g-1. The thermal properties, including thermal degradation and thermal conductivity were highly improved. Among the prepared hybrid aerogels, pectin-silica samples had the lowest thermal conductivity of 19 mWm-1 K-1.

11.
Carbohydr Polym ; 166: 365-376, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28385244

RESUMO

In this study, we developed a novel high methoxyl pectin-xanthan aerogel coating on medical-grade stainless steel, prepared by ethanol-induced gelation and subsequent supercritical drying. Two non-steroidal anti-inflammatory drugs, i.e. diclofenac sodium and indomethacin, were incorporated into the aerogel coating. Electrochemical analyses were performed on the coated samples using electrochemical impedance spectroscopy and cyclic polarization techniques. The results showed that all passivated samples were highly resistant to general corrosion. The release of both non-steroidal anti-inflammatory drugs was complete after 24h, as confirmed by the plateau in the drug release profiles as well as by IR spectroscopy after the final release point. The potential of samples for use in orthopedic applications was evaluated on a human bone-derived osteoblast cell and all samples were shown to be biocompatible. The increased viability of some samples indicates the high potential of the developed approach for future evaluation of possible clinical use.


Assuntos
Materiais Revestidos Biocompatíveis/química , Portadores de Fármacos/química , Pectinas/química , Polissacarídeos Bacterianos/química , Células Cultivadas , Corrosão , Diclofenaco/administração & dosagem , Etanol , Géis , Humanos , Indometacina/administração & dosagem , Teste de Materiais , Osteoblastos/efeitos dos fármacos
12.
Carbohydr Polym ; 113: 272-8, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256485

RESUMO

The purpose of this work was to prepare stable citrus (CF) and apple (AF) pectin aerogels for potential pharmaceutical applications. Different shapes of low ester pectin aerogels were prepared by two fundamental methods of ionic cross-linking. Pectins' spherical and multi-membrane gels were first formed by the diffusion method using 0.2M CaCl2 solution as an ionic cross-linker. The highest specific surface area (593 m(2)/g) that had so far been reported for pectin aerogels was achieved using this method. Monolithic pectin gels were formed by the internal setting method. Pectin gels were further converted into aerogels by supercritical drying using CO2. As surface area/volume is one of the key parameters in controlling drug release, multi-membrane pectin aerogels were further used as drug delivery carriers. Theophylline and nicotinic acid were used as model drugs for the dissolution study. CF aerogels showed more controlled release behaviour than AF pectin aerogels. Moreover a higher release rate (100%) was observed with CF aerogels.


Assuntos
Implantes Absorvíveis , Portadores de Fármacos/síntese química , Géis/síntese química , Pectinas/síntese química , Portadores de Fármacos/metabolismo , Géis/metabolismo , Pectinas/metabolismo , Solubilidade
13.
Int J Pharm ; 454(1): 58-66, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23850813

RESUMO

The presented research was oriented towards the preparation of dry biodegradable alginate aerogels with multi-membranes using a multi-step sol-gel process with potential applications as carriers during oral drug delivery. First alginate spherical hydrogels were formed in CaCl2 or BaCl2 solutions by ionic cross-linking. These cores were further immersed into alginate sodium solution, filtered through a sieve, and dropped into the salt solution again. Multi-membrane hydrogels were obtained by repeating the above process. They were further converted into aerogels by supercritical drying. The effect of the number of membranes was investigated regarding the loading and release of the model drugs nicotinic acid and theophylline. Moreover, the efficiencies of Ba(2+) and Ca(2+) metal ions for forming tridimensional networks that retain and extend drug release were also investigated. Nicotinic acid release was prolonged by adding membranes around the core and using Ca(2+) for cross-linking. However, retarded theophylline release was only obtained by using Ba(2+) for cross-linking. Namely, by increasing the number of membranes and BaCl2 concentration drug release became linear versus time in all studied cases. In the case of nicotinic acid loading increased by adding membranes around the core, however, for theophylline the opposite results were obtained due to the different nature of the model drugs.


Assuntos
Alginatos/química , Portadores de Fármacos , Membranas Artificiais , Niacina/química , Teofilina/química , Compostos de Bário/química , Cloreto de Cálcio/química , Química Farmacêutica , Cloretos/química , Reagentes de Ligações Cruzadas/química , Preparações de Ação Retardada , Géis , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Cinética , Modelos Lineares , Solubilidade , Tecnologia Farmacêutica/métodos , Temperatura
14.
J Biomater Sci Polym Ed ; 23(7): 873-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21457617

RESUMO

Aerogels of natural polysaccharides possess both biocharacteristics of polysaccharides, such as good biological compatibility and cell or enzyme-controlled degradability, and aerogel characteristics, such as very high porosity and specific surface areas that makes them highly attractive in drug delivery. Biodegradable alginate aerogels were synthesized via a sol-gel process. In the present work two methods of ionic cross-linking were used to prepare alginate hydrogels as monoliths and spheres, which can be further easily converted to high surface area aerogels. The aerogels obtained were further used as drug carriers. We investigated the effect of process parameters, such as starting concentration and viscosity of alginate solution, on synthesis products and on model drug (nicotinic acid) release. The results indicate that by using the internal setting cross-linking method for obtaining monolithic aerogels nicotinic acid was released in a more controlled manner. The aerogels thus obtained also exhibited smaller volume shrinkage than the ones described in other publications. However, with increasing alginate concentration in both types of synthesis more compact and cross-linked aerogels were formed.


Assuntos
Alginatos/síntese química , Portadores de Fármacos/síntese química , Géis/síntese química , Niacina/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Alginatos/química , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Géis/química , Ácido Glucurônico/síntese química , Ácido Glucurônico/química , Ácidos Hexurônicos/síntese química , Ácidos Hexurônicos/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Niacina/farmacocinética , Soluções , Viscosidade , Complexo Vitamínico B/farmacocinética , Água/química
15.
Phytother Res ; 25(3): 402-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20734322

RESUMO

Polyphenol antioxidants decrease the risk of atherosclerosis. The study aimed to evaluate prospectively in healthy young participants the effect of oral rosemary extracts (RE), consisting of diphenols, upon endothelial dysfunction (ED), preceding structural atherosclerosis. Nineteen healthy young volunteers were studied prospectively, who received oral RE (77.7 mg) for 21 days, consisting of active substances carnosol (0.97 mg), carnosic (8.60 mg) and rosmarinic acid (10.30 mg). Before and after RE treatment, the study evaluated fasting serum levels of plasminogen-activator-inhibitor-1 (PAI-1), vascular cell adhesion molecule 1 (VCAM-1), inter-cellular adhesion molecule 1 (ICAM-1), superoxide dismutase (SOD), glutathione peroxidase (GPX), fibrinogen, high-sensitivity capsular reactive protein (hs-CRP), tumor-necrosis factor α (TNF-α), the lipid profile and ED, characterized as flow-mediated dilatation (FMD) in the brachial artery of < 4.5%, estimated by ultrasound measurements. After 21 days, any side effects were registered, the mean FMD increased nonsignificantly (6.51 ± 5.96% vs 7.78 ± 4.56%, p = 0.546) and ED decreased significantly (66.6% vs 16.6%, p = 0.040). Among the serum markers, only the mean PAI-1 level decreased significantly (4.25 ± 1.46 U/mL vs 3.0 ± 0.61 U/mL, p = 0.012) after 21-day RE supplementation. It is concluded that oral RE supplementation has the potential to improve serum PAI-1 activity and ED in young and healthy individuals.


Assuntos
Artéria Braquial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Inibidor 1 de Ativador de Plasminogênio/sangue , Rosmarinus/química , Vasodilatação/efeitos dos fármacos , Abietanos/farmacologia , Administração Oral , Adulto , Artéria Braquial/diagnóstico por imagem , Cinamatos/farmacologia , Depsídeos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Feminino , Humanos , Masculino , Estudos Prospectivos , Ultrassonografia , Vasodilatadores/farmacologia , Ácido Rosmarínico
16.
J Hazard Mater ; 165(1-3): 1114-8, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19095355

RESUMO

Silica aerogels are alternative adsorbents to activated carbon (AC) for the removal and the recovery of organic vapours from gas streams. The adsorption capacity measurements of different silica aerogels were done by mini-column method. Continuous adsorption measurements show that silica aerogels are excellent adsorbents of BTEX vapours from waste gas stream. Compared to the most used adsorbents, such as AC and silica gel, aerogels exhibit capacities which enormously exceed that of both commonly used adsorbents. By increasing the degree of hydrophobicity, aerogels become less effective, but they do not adsorb water vapour from gas stream. Silica monolith aerogels with different degrees of hydrophobicity by incorporating methyltrimethoxysilane (MTMS) or trimethylethoxysilane (TMES) in standard sol-gel synthesis were prepared. Excellent properties of aerogels, obtained with the sol-gel synthesis, were preserved with supercritical drying with CO(2). The degree of hydrophobicity of the aerogels was tested by measuring the contact angle (theta) of a water droplet with the aerogel surface. The aerogels were also characterised by FTIR, nitrogen sorption and DSC/TG measurements.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Derivados de Benzeno/isolamento & purificação , Resíduos Industriais/prevenção & controle , Benzeno/isolamento & purificação , Gases , Géis , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício , Tolueno/isolamento & purificação , Xilenos/isolamento & purificação
17.
J Colloid Interface Sci ; 310(2): 362-8, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17350031

RESUMO

Silica monolith aerogels with different degrees of hydrophobicity were prepared by incorporating methyltrimethoxysilane (MTMS) or trimethylethoxysilane (TMES) in standard sol-gel synthesis followed by supercritical drying of gels with carbon dioxide (CO(2)) at 40 degrees C and 100 bar. The hydrophobicity of the aerogels was tested by measuring the contact angle (theta). The aerogels were also characterised by FTIR, DSC, and porosity measurements. Adsorption capacity measurements show that such modified hydrophobic silica aerogels are excellent adsorbents for different toxic organic compounds from water. In comparison to granulated active carbon (GAC) they exhibit capacities which are from 15 to 400 times higher for all tested compounds. Adsorption properties of hydrophobic silica aerogel remain stable even after 20 adsorption/desorption cycles.


Assuntos
Dióxido de Silício/química , Solventes/química , Poluentes Químicos da Água/química , Purificação da Água , Adsorção , Géis , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...