Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 61(2): 245-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21684342

RESUMO

The ability to consume wood as food (xylotrophy) is unusual among animals. In terrestrial environments, termites and other xylotrophic insects are the principle wood consumers while in marine environments wood-boring bivalves fulfill this role. However, the evolutionary origin of wood feeding in bivalves has remained largely unexplored. Here we provide data indicating that xylotrophy has arisen just once in Bivalvia in a single wood-feeding bivalve lineage that subsequently diversified into distinct shallow- and deep-water branches, both of which have been broadly successful in colonizing the world's oceans. These data also suggest that the appearance of this remarkable life habit was approximately coincident with the acquisition of bacterial endosymbionts. Here we generate a robust phylogeny for xylotrophic bivalves and related species based on sequences of small and large subunit nuclear rRNA genes. We then trace the distribution among the modern taxa of morphological characters and character states associated with xylotrophy and xylotrepesis (wood-boring) and use a parsimony-based method to infer their ancestral states. Based on these ancestral state reconstructions we propose a set of plausible hypotheses describing the evolution of symbiotic xylotrophy in Bivalvia. Within this context, we reinterpret one of the most remarkable progressions in bivalve evolution, the transformation of the "typical" myoid body plan to create a unique lineage of worm-like, tube-forming, wood-feeding clams. The well-supported phylogeny presented here is inconsistent with most taxonomic treatments for xylotrophic bivalves, indicating that the bivalve family Pholadidae and the subfamilies Teredininae and Bankiinae of the family Teredinidae are non-monophyletic, and that the principle traits used for their taxonomic diagnosis are phylogenetically misleading.


Assuntos
Bivalves/genética , Bivalves/microbiologia , Filogenia , Simbiose , Animais , Bactérias/crescimento & desenvolvimento , Evolução Biológica , Bivalves/fisiologia , Genes de RNAr , Análise de Sequência de DNA , Madeira
2.
PLoS One ; 4(7): e6085, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19568419

RESUMO

Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2-40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.


Assuntos
Bivalves/microbiologia , Genoma Bacteriano , Biologia Marinha , Proteobactérias/genética , Simbiose , Madeira , Animais , Bivalves/metabolismo , Biologia Computacional , Nitrogênio/metabolismo , Filogenia , Polissacarídeos/metabolismo , Proteobactérias/classificação , Proteobactérias/enzimologia , Proteobactérias/fisiologia , Percepção de Quorum , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
3.
Dev Biol ; 285(1): 156-68, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16054124

RESUMO

In Xenopus, the biological effects of BMP-3 oppose those of ventralizing BMPs, but the mechanism for this antagonism remains unclear. Here, we demonstrate that BMP-3 is a dorso-anteriorizing factor in Xenopus embryos that interferes with both activin and BMP signaling. BMP-3 acts by binding to ActRIIB, the common type II receptor for these proteins. Once BMP-3 binds to ActRIIB, it cannot be competed off by excess ligand making a receptor complex that is unable to activate R-Smads and transduce signal. Consistent with a model where BMP-3 interferes with activin and BMPs through a shared receptor, we show that overexpression of BMP-3 can only be rescued by co-injection of xActRIIB. Our results identify BMP-3 as a novel antagonist of both activin and BMPs and uncover how some of the diverse developmental processes that are regulated by both activin and BMP signaling can be modulated during embryogenesis.


Assuntos
Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Xenopus/embriologia , Xenopus/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Ativinas/antagonistas & inibidores , Ativinas/genética , Animais , Proteína Morfogenética Óssea 3 , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Fenótipo , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Xenopus/genética , Proteínas de Xenopus
4.
Dev Cell ; 4(2): 143-4, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12586054

RESUMO

Members of the TGFbeta superfamily play many roles in embryonic development and adult tissue homeostasis. Now recent work focused on growth and differentiation factors (GDFs) suggest that these TGFbeta-like molecules may also control organ size and may, in fact, be the long sought after chalones, or negative growth regulators.


Assuntos
Inibidores do Crescimento/fisiologia , Animais , Diferenciação Celular , Divisão Celular/fisiologia , Humanos , Fator de Crescimento Transformador beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...