Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38927280

RESUMO

The agricultural sector is currently encountering significant challenges due to the effects of climate change, leading to negative consequences for crop productivity and global food security. In this context, traditional agricultural practices have been inadequate in addressing the fast-evolving challenges while maintaining environmental sustainability. A possible alternative to traditional agricultural management is represented by using beneficial micro-organisms that, once applied as bioinoculants, may enhance crop resilience and adaptability, thereby mitigating the adverse effects of environmental stressors and boosting productivity. Tomato is one of the most important crops worldwide, playing a central role in the human diet. The aim of this study was to evaluate the impact of a nitrogen-fixing bacterial-based biostimulant (Azospirillum sp., Azotobacter sp., and Rhizobium sp.) in combination or not with a commercial inoculum Micomix (Rhizoglomus irregulare, Funnelliformis mosseae, Funnelliformis caledonium, Bacillus licheniformis, and Bacillus mucilaginosus) (MYC) on the native rhizosphere communities and tomato production. Bacterial populations in the different samples were characterized using an environmental metabarcoding approach. The bioinocula effect on the native rhizosphere microbiota resulted in significant variation both in alpha and beta diversity and in a specific signature associated with the presence of biostimulants.

2.
Antibiotics (Basel) ; 13(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667002

RESUMO

The World Health Organization (WHO) promotes research aimed at developing new drugs from natural compounds. Fungi are important producers of bioactive molecules, and they are often effective against other fungi and/or bacteria and are thus a potential source of new antibiotics. Basidiomycota crude extracts, which have previously been proven to be active against Pseudomonas aeruginosa ATCC27853, were subjected to liquid chromatographic separation by RP-18, leading to six macro-fractions for each fungal extract. The various fractions were tested for their bioactivities against P. aeruginosa ATCC27853, and ten of them were characterized by HPLC-HRMS and NMR. Further chromatographic separations were performed for a few selected macro-fractions, yielding seven pure compounds. Bioactivity was mainly found in the lipophilic fractions containing fatty acids and their derivatives, such as hydroxy or keto C-18 unsaturated acids, and in various complex lipids, such as glycolipids and related compounds. More hydrophilic molecules, such as GABA, phenethylamine, two chromogenic anthraquinoids and pistillarin, were also isolated, and their antibacterial activities were recorded. The novelties of this research are as follows: (i) the genera Cortinarius and Mycena have never been investigated before for the synthesis of antibiotic compounds; (ii) the molecules produced by these genera are known, but their production has never been reported in the investigated fungi; (iii) the determination of bacterial siderophore synthesis inhibition by certain compounds from Cortinarius and Mycena.

3.
Microorganisms ; 11(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37630451

RESUMO

Tomatoes are one of the most important crops worldwide and also play a central role in the human diet. Microbial consortia are microorganism associations, often employed as bioinoculants, that can interact with the native rhizosphere microbiota. The aim of this study was to evaluate the impact of a bacterial-based biostimulant (Pseudomonas fluorescens and Bacillus amyloliquefaciens) (PSBA) in combination, or not, with a commercial inoculum Micomix (Rhizoglomus irregulare, Funnelliformis mosseae, Funnelliformis caledonium, Bacillus licheniformis, Bacillus mucilaginosus) (MYC) on the native rhizosphere communities and on tomato production. The trial was carried out using Solanum lycopersicum in an open field as follows: control full NPK (CFD), control reduced NPK (CRD), MYC, PSBA, PSBA + MYC. Bacterial population in the different samples were characterized using a next generation sequencing approach. The bioinocula effect on the native rhizosphere microbiota resulted in significant variation both in alpha and beta diversity and in a specific signature associated with the presence of biostimulants, especially in the presence of co-inoculation (PSBA + MYC). In particular, the high initial biodiversity shifts in the community composition occurred and consisted in the increase in the abundance of genera correlated to the soil acidification and in an enhanced density of nitrogen-fixing microbes. The results also highlighted the well-known rhizosphere effect.

4.
Microorganisms ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557714

RESUMO

The inoculation of plant growth-promoting bacteria (PGPB) as biofertilizers is one of the most efficient and sustainable strategies of rhizosphere manipulation leading to increased plant biomass and yield and improved plant health, as well as the ameliorated nutritional value of fruits and edible seeds. During the last decades, exciting, but heterogeneous, results have been obtained growing PGPB inoculated plants under controlled, stressful, and open field conditions. On the other hand, the possible impact of the PGPB deliberate release on the resident microbiota has been less explored and the little available information is contradictory. This review aims at filling this gap: after a brief description of the main mechanisms used by PGPB, we focus our attention on the process of PGPB selection and formulation and we provide some information on the EU regulation for microbial inocula. Then, the concept of PGPB inocula as a tool for rhizosphere engineering is introduced and the possible impact of bacterial inoculant on native bacterial communities is discussed, focusing on those bacterial species that are included in the EU regulation and on other promising bacterial species that are not yet included in the EU regulation.

5.
Microorganisms ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36422310

RESUMO

Tomatoes are among the most consumed vegetables worldwide and represent a source of health-beneficial substances. Our study represents the first investigating the peel-associated epiphytic bacteria of red and purple (anthocyanin-rich) tomatoes subjected to organic and conventional farming systems. Proteobacteria was the dominant phylum (relative abundances 79-91%) in all experimental conditions. Enterobacteriaceae represented a large fraction (39.3-47.5%) of the communities, with Buttiauxella and Atlantibacter as the most represented genera. The core microbiota was composed of 59 operational taxonomic units (OTUs), including the majority of the most abundant ones. The occurrence of the most abundant OTUs differed among the experimental conditions. OTU 1 (Buttiauxella), OTU 2 (Enterobacteriales), and OTU 6 (Bacillales) were higher in red and purple tomatoes grown under organic farming. OTU 5 (Acinetobacter) had the highest abundance in red tomatoes subjected to organic farming. OTU 3 (Atlantibacter) was among the major OTUs in red tomatoes under both farming conditions. OTU 7 (Clavibacter) and OTU 8 (Enterobacteriaceae) had abundances ≥1% only in red tomatoes grown under conventional farming. PCA and clustering analysis highlighted a high similarity between the bacterial communities of red and purple tomatoes grown under organic farming. Furthermore, the bacterial communities of purple tomatoes grown under organic farming showed the lowest diversity and evenness. This work paves the way to understand the role of nutritional superior tomato genotypes, combined with organic farming, to modulate the presence of beneficial/harmful bacteria and supply healthier foods within a sustainable agriculture.

6.
Aging Clin Exp Res ; 34(10): 2345-2353, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35920993

RESUMO

BACKGROUND: NETosis is a neutrophil-mediated defense mechanism during which DNA and enzymes are extruded forming a network (NETs) trapping and killing different pathogens. NETosis is reduced in both mice and humans during aging. AIMS: We explored the difference in the efficacy of NETs released in elderly (> 65 years) versus adults (20-50 years) subjects in inhibiting Staphylococcus aureus growth and activating the growth of keratinocytes. METHODS: Neutrophil granulocytes, obtained from venous blood both in healthy elderly and adult subjects, were stimulated by LPS (0-250 µg/ml) to induce the formation of NET. NETs were quantified by SYBR Green staining and growth inhibition of S. aureus was evaluated by disk diffusion test. Furthermore, NETs (0-500 ng/ml) were added to immortalized human keratinocytes (HaCaT cells), and their proliferation was evaluated by MTT assay after 24 h. Finally, the DNA size of NETs was evaluated by flow cytometry after SYBR Green staining. RESULTS: Greater production of NETs was observed in elderly subjects than in adults, but these NETs showed reduced bactericidal capacity and HaCaT cells' proliferation stimulation. The activities of the NETs are related to the size of the extruded DNA threads, and when NETs size was analyzed, DNA from elderly showed a higher size compared to that obtained by adults. DISCUSSION: Unexpected results showed aging-related NETs structural modification resulting in both a lower antimicrobial activity and keratinocyte proliferation stimulation compared to NETs obtained from adults. CONCLUSIONS: The NETs DNA size observed in elderly subjects has not been previously reported and could be part of other pathogenic mechanisms observed in aging.


Assuntos
Armadilhas Extracelulares , Humanos , Camundongos , Animais , Idoso , Armadilhas Extracelulares/fisiologia , Staphylococcus aureus , Neutrófilos , DNA , Envelhecimento
7.
Microorganisms ; 10(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35630335

RESUMO

Bacterial endophytes were isolated from nodules of pea and fava bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilization, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and three strains of Serratia plymuthica were selected. To shed light on the mechanisms underlying salt tolerance, the proteome of the two most performant strains (Ra4 and Sp2) grown in the presence or not of salt was characterized. The number of proteins expressed by the endophytes was higher in the presence of salt. The modulated proteome consisted of 302 (100 up-regulated, 202 down-regulated) and 323 (206 up-regulated, 117 down-regulated) proteins in Ra4 and Sp2, respectively. Overall, proteins involved in abiotic stress responses were up-regulated, while those involved in metabolism and flagellum structure were down-regulated. The main up-regulated proteins in Sp2 were thiol: disulfide interchange protein DsbA, required for the sulfur binding formation in periplasmic proteins, while in Ra4 corresponded to the soluble fraction of ABC transporters, having a role in compatible solute uptake. Our results demonstrated a conserved response to salt stress in the two taxonomically related species.

8.
Antibiotics (Basel) ; 10(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34827362

RESUMO

The excessive consumption of antibiotics in clinical, veterinary and agricultural fields has resulted in tremendous flow of antibiotics into the environment. This has led to enormous selective pressures driving the evolution of antimicrobial resistance genes in pathogenic and commensal bacteria. In this context, the World Health Organization (WHO) has promoted research aiming to develop medical features using natural products that are often competitive with synthetic drugs in clinical performance. Fungi are considered an important source of bioactive molecules, often effective against other fungi and/or bacteria, and thus are potential candidates in the search of new antibiotics. Fruiting bodies of sixteen different fungal species of Basidiomycota were collected in the Italian Alps. The identification of fungal species was performed through Internal Transcribed Spacer (ITS) sequencing. Most species belong to genera Cortinarius, Mycena and Ramaria, whose metabolite contents has been scarcely investigated so far. The crude extracts obtained from the above mushrooms were tested for their inhibition activity against five human pathogens: Candida albicans ATCC 14053, C. glabrata ATCC 15126, Staphylococcus aureus NCTC 6571, Pseudomonas aeruginosa ATCC 27853 and Klebsiella pneumoniae ATCC 13883. Twelve crude extracts showed activity against P. aeruginosa ATCC 27853. Highest activity was shown by some Cortinarius species, as C. nanceiensis.

9.
Front Microbiol ; 12: 676610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349738

RESUMO

Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms that can establish symbiotic associations with Vitis vinifera roots, resulting in positive effects on grapevine performance, both in terms of water use efficiency, nutrient uptake, and replant success. Grapevine is an important perennial crop cultivated worldwide, especially in Mediterranean countries. In Italy, Piedmont is one of the regions with the longest winemaking tradition. In the present study, we characterized the AMF communities of the soil associated or not with the roots of V. vinifera cv. Pinot Noir cultivated in a vineyard subjected to conventional management using 454 Roche sequencing technology. Samplings were performed at two plant phenological stages (flowering and early fruit development). The AMF community was dominated by members of the family Glomeraceae, with a prevalence of the genus Glomus and the species Rhizophagus intraradices and Rhizophagus irregularis. On the contrary, the genus Archaeospora was the only one belonging to the family Archaeosporaceae. Since different AMF communities occur in the two considered soils, independently from the plant phenological stage, a probable role of V. vinifera in determining the AMF populations associated to its roots has been highlighted.

10.
Microorganisms ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201731

RESUMO

Algeria is the largest country in Africa characterized by semi-arid and arid sites, located in the North, and hypersaline zones in the center and South of the country. Several autochthonous plants are well known as medicinal plants, having in common tolerance to aridity, drought and salinity. In their natural environment, they live with a great amount of microbial species that altogether are indicated as plant microbiota, while the plants are now viewed as a "holobiont". In this work, the microbiota of the soil associated to the roots of fourteen economically relevant autochthonous plants from Algeria have been characterized by an innovative metagenomic approach with a dual purpose: (i) to deepen the knowledge of the arid and semi-arid environment and (ii) to characterize the composition of bacterial communities associated with indigenous plants with a strong economic/commercial interest, in order to make possible the improvement of their cultivation. The results presented in this work highlighted specific signatures which are mainly determined by climatic zone and soil properties more than by the plant species.

12.
Sci Rep ; 10(1): 6453, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296119

RESUMO

The structure of the bacteriome associated with grapevine roots can affect plant development, health and grape quality. We previously investigated the bacterial biodiversity of the Vitis vinifera cv. Pinot Noir rhizosphere in a vineyard subjected to integrated pest management. The aim of this work is to characterize the bacteriome of V. vinifera cv. Pinot Noir in a conventionally managed vineyard using a metabarcoding approach. Comparisons between the microbial community structure in bulk soil and rhizosphere (variable space) were performed and shifts of bacteriome according to two sampling times (variable time) were characterized. Bacterial biodiversity was higher at the second than at the first sampling and did not differ according to the variable space. Actinobacteria was the dominant class, with Gaiella as the most represented genus in all the samples. Among Proteobacteria, the most represented classes were Alpha, Beta and Gamma-Proteobacteria, with higher abundance at the second than at the first sampling time. Bradyrhizobium was the most frequent genus among Alpha-Proteobacteria, while Burkholderia was the predominant Beta-Proteobacteria. Among Firmicutes, the frequency of Staphylococcus was higher than 60% in bulk soil and rhizosphere. Finally, the sampling time can be considered as one of the drivers responsible for the bacteriome variations assessed.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Rizosfera , Microbiologia do Solo , Vitis/microbiologia , Produção Agrícola , Fazendas , Raízes de Plantas/microbiologia , Vitis/fisiologia
13.
Front Microbiol ; 8: 1528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855895

RESUMO

Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...