Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511233

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1) is one of the most important enzymes in base excision repair. Studies on this enzyme have been conducted for a long time, but some aspects of its activity remain poorly understood. One such question concerns the mechanism of damaged-nucleotide recognition by the enzyme, and the answer could shed light on substrate specificity control in all enzymes of this class. In the present study, by pulsed electron-electron double resonance (DEER, also known as PELDOR) spectroscopy and pre-steady-state kinetic analysis along with wild-type (WT) APE1 from Danio rerio (zAPE1) or three mutants (carrying substitution N253G, A254G, or E260A), we aimed to elucidate the molecular events in the process of damage recognition. The data revealed that the zAPE1 mutant E260A has much higher activity toward DNA substrates containing 5,6-dihydro-2'-deoxyuridine (DHU), 2'-deoxyuridine (dU), alpha-2'-deoxyadenosine (αA), or 1,N6-ethenoadenosine (εA). Examination of conformational changes in DNA clearly revealed multistep DNA rearrangements during the formation of the catalytic complex. These structural rearrangements of DNA are directly associated with the capacity of damaged DNA for enzyme-induced bending and unwinding, which are required for eversion of the damaged nucleotide from the DNA duplex and for its placement into the active site of the enzyme. Taken together, the results experimentally prove the factors that control substrate specificity of the AP endonuclease zAPE1.


Assuntos
Aminoácidos , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Aminoácidos/genética , Especificidade por Substrato , Cinética , Espectroscopia de Ressonância de Spin Eletrônica , Dano ao DNA , Reparo do DNA , DNA/química , Endonucleases/metabolismo , Nucleotídeos , Desoxiuridina
2.
Biochim Biophys Acta Gen Subj ; 1866(11): 130216, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35905924

RESUMO

Apurinic/apyrimidinic (AP) endonuclease Nfo from Escherichia coli recognises AP sites in DNA and catalyses phosphodiester bond cleavage on the 5' side of AP sites and some damaged or undamaged nucleotides. Here, the mechanism of target nucleotide recognition by Nfo was analysed by pulsed electron-electron double resonance (PELDOR, also known as DEER) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer detection of DNA conformational changes during DNA binding. The efficiency of endonucleolytic cleavage of a target nucleotide in model DNA substrates was ranked as (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran [F-site] > 5,6-dihydro-2'-deoxyuridine > α-anomer of 2'-deoxyadenosine >2'-deoxyuridine > undamaged DNA. Real-time conformational changes of DNA during interaction with Nfo revealed an increase of distances between duplex ends during the formation of the initial enzyme-substrate complex. The use of rigid-linker spin-labelled DNA duplexes in DEER measurements indicated that double-helix bending and unwinding by the target nucleotide itself is one of the key factors responsible for indiscriminate recognition of a target nucleotide by Nfo. The results for the first time show that AP endonucleases from different structural families utilise a common strategy of damage recognition, which globally may be integrated with the mechanism of searching for specific sites in DNA by other enzymes.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Escherichia coli , DNA , Dano ao DNA , Reparo do DNA , Desoxiuridina , Espectroscopia de Ressonância de Spin Eletrônica , Endonucleases , Humanos , Cinética , Nucleotídeos
3.
Int J Mol Sci ; 23(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35270011

RESUMO

Apurinic/apyrimidinic (AP)-endonucleases are multifunctional enzymes that are required for cell viability. AP-endonucleases incise DNA 5' to an AP-site; can recognize and process some damaged nucleosides; and possess 3'-phosphodiesterase, 3'-phosphatase, and endoribonuclease activities. To elucidate the mechanism of substrate cleavage in detail, we analyzed the effect of mono- and divalent metal ions on the exo- and endonuclease activities of four homologous APE1-like endonucleases (from an insect (Rrp1), amphibian (xAPE1), fish (zAPE1), and from humans (hAPE1)). It was found that the enzymes had similar patterns of dependence on metal ions' concentrations in terms of AP-endonuclease activity, suggesting that the main biological function (AP-site cleavage) was highly conserved among evolutionarily distant species. The efficiency of the 3'-5' exonuclease activity was the highest in hAPE1 among these enzymes. In contrast, the endoribonuclease activity of the enzymes could be ranked as hAPE1 ≈ zAPE1 ≤ xAPE1 ≤ Rrp1. Taken together, the results revealed that the tested enzymes differed significantly in their capacity for substrate cleavage, even though the most important catalytic and substrate-binding amino acid residues were conserved. It can be concluded that substrate specificity and cleavage efficiency were controlled by factors external to the catalytic site, e.g., the N-terminal domain of these enzymes.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Endorribonucleases/metabolismo , Modelos Moleculares , Especificidade por Substrato
4.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613750

RESUMO

Among the great variety of anti-cancer therapeutic strategies, boron neutron capture therapy (BNCT) represents a unique approach that doubles the targeting accuracy due to the precise positioning of a neutron beam and the addressed delivery of boron compounds. We have recently demonstrated the principal possibility of using a cell-specific 2'-F-RNA aptamer for the targeted delivery of boron clusters for BNCT. In the present study, we evaluated the amount of boron-loaded aptamer inside the cell via two independent methods: quantitative real-time polymerase chain reaction and inductive coupled plasma-atomic emission spectrometry. Both assays showed that the internalized boron level inside the cell exceeds 1 × 109 atoms/cell. We have synthesized closo-dodecaborate conjugates of 2'-F-RNA aptamers GL44 and Waz, with boron clusters attached either at the 3'- or at the 5'-end. The influence of cluster localization was evaluated in BNCT experiments on U-87 MG human glioblastoma cells and normal fibroblasts and subsequent analyses of cell viability via real-time cell monitoring and clonogenic assay. Both conjugates of GL44 aptamer provided a specific decrease in cell viability, while only the 3'-conjugate of the Waz aptamer showed the same effect. Thus, an individual adjustment of boron cluster localization is required for each aptamer. The efficacy of boron-loaded 2'-F-RNA conjugates was comparable to that of 10B-boronophenylalanine, so this type of boron delivery agent has good potential for BNCT due to such benefits as precise targeting, low toxicity and the possibility to use boron clusters made of natural, unenriched boron.


Assuntos
Terapia por Captura de Nêutron de Boro , Glioblastoma , Humanos , Boro/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Glioblastoma/metabolismo , Compostos de Boro , Oligonucleotídeos , Fenilalanina/uso terapêutico
5.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298946

RESUMO

Boron neutron capture therapy (BNCT) is a binary radiotherapeutic approach to the treatment of malignant tumors, especially glioblastoma, the most frequent and incurable brain tumor. For successful BNCT, a boron-containing therapeutic agent should provide selective and effective accumulation of 10B isotope inside target cells, which are then destroyed after neutron irradiation. Nucleic acid aptamers look like very prospective candidates for carrying 10B to the tumor cells. This study represents the first example of using 2'-F-RNA aptamer GL44 specific to the human glioblastoma U-87 MG cells as a boron delivery agent for BNCT. The closo-dodecaborate residue was attached to the 5'-end of the aptamer, which was also labeled by the fluorophore at the 3'-end. The resulting bifunctional conjugate showed effective and specific internalization into U-87 MG cells and low toxicity. After incubation with the conjugate, the cells were irradiated by epithermal neutrons on the Budker Institute of Nuclear Physics neutron source. Evaluation of the cell proliferation by real-time cell monitoring and the clonogenic test revealed that boron-loaded aptamer decreased specifically the viability of U-87 MG cells to the extent comparable to that of 10B-boronophenylalanine taken as a control. Therefore, we have demonstrated a proof of principle of employing aptamers for targeted delivery of boron-10 isotope in BNCT. Considering their specificity, ease of synthesis, and large toolkit of chemical approaches for high boron-loading, aptamers provide a promising basis for engineering novel BNCT agents.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Compostos de Boro/farmacologia , Boro/farmacologia , Neoplasias Encefálicas/reabilitação , Glioblastoma/radioterapia , Isótopos/farmacologia , Nêutrons/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Humanos
6.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375375

RESUMO

Oligonucleotide conjugates with boron clusters have found applications in different fields of molecular biology, biotechnology, and biomedicine as potential agents for boron neutron capture therapy, siRNA components, and antisense agents. Particularly, the closo-dodecaborate anion represents a high-boron-containing residue with remarkable chemical stability and low toxicity, and is suitable for the engineering of different constructs for biomedicine and molecular biology. In the present work, we synthesized novel oligonucleotide conjugates of closo-dodecaborate attached to the 5'-, 3'-, or both terminal positions of DNA, RNA, 2'-O-Me RNA, and 2'-F-Py RNA oligomers. For their synthesis, we employed click reaction with the azido derivative of closo-dodecaborate. The key physicochemical characteristics of the conjugates have been investigated using high-performance liquid chromatography, gel electrophoresis, UV thermal melting, and circular dichroism spectroscopy. Incorporation of closo-dodecaborate residues at the 3'-end of all oligomers stabilized their complementary complexes, whereas analogous 5'-modification decreased duplex stability. Two boron clusters attached to the opposite ends of the oligomer only slightly influence the stability of complementary complexes of RNA oligonucleotide and its 2'-O-methyl and 2'-fluoro analogs. On the contrary, the same modification of DNA oligonucleotides significantly destabilized the DNA/DNA duplex but gave a strong stabilization of the duplex with an RNA target. According to circular dichroism spectroscopy results, two terminal closo-dodecaborate residues cause a prominent structural rearrangement of complementary complexes with a substantial shift from the B-form to the A-form of the double helix. The revealed changes of key characteristics of oligonucleotides caused by incorporation of terminal boron clusters, such as the increase of hydrophobicity, change of duplex stability, and prominent structural changes for DNA conjugates, should be taken into account for the development of antisense oligonucleotides, siRNAs, or aptamers bearing boron clusters. These features may also be used for engineering of developing NA constructs with pre-defined properties.


Assuntos
Compostos de Boro/química , Substâncias Macromoleculares/química , Oligonucleotídeos/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular
7.
Molecules ; 24(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31771111

RESUMO

A novel and convenient approach for the solid-phase 5'-functionalization of oligonucleotides is proposed in this article. The approach is based on the activation of free 5'-hydroxyl of polymer support-bound protected oligonucleotides by N,N'-disuccinimidyl carbonate followed by interaction with amino-containing ligands. Novel amino-containing derivatives of closo-dodecaborate, estrone, cholesterol, and α-tocopherol were specially prepared. A wide range of oligonucleotide conjugates bearing closo-dodecaborate, short peptide, pyrene, lipophilic residues (cholesterol, α-tocopherol, folate, estrone), aliphatic diamines, and propargylamine were synthesized and characterized to demonstrate the versatility of the approach. The developed method is suitable for the conjugate synthesis of oligonucleotides of different types (ribo-, deoxyribo-, 2'-O-methylribo-, and others).


Assuntos
Oligonucleotídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Compostos de Boro/química , Diaminas/química , Estrutura Molecular , Oligonucleotídeos/química , Pargilina/análogos & derivados , Pargilina/química , Propilaminas/química , Pirenos/química
8.
Molecules ; 22(12)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29189716

RESUMO

In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos/química , Sondas de Oligonucleotídeos/química , Pirenos/química , DNA/química , Corantes Fluorescentes , Modelos Moleculares , Nanotecnologia , Conformação de Ácido Nucleico , RNA/química
9.
Bioorg Med Chem ; 23(17): 5932-45, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26190459

RESUMO

Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications.


Assuntos
Centrômero/química , DNA/química , Nylons/química , Animais , Sítios de Ligação , Camundongos , Conformação de Ácido Nucleico
10.
Chembiochem ; 15(13): 1939-46, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25044697

RESUMO

The synthesis and properties two series of new 2'-O-methyl RNA probes, each containing a single insertion of a 2'-bispyrenylmethylphosphorodiamidate derivative of a nucleotide (U, C, A, and G), are described. As demonstrated by UV melting studies, the probes form stable complexes with model RNAs and DNAs. Significant increases (up to 21-fold) in pyrene excimer fluorescence intensity were observed upon binding of most of the probes with complementary RNAs, but not with DNAs. The fluorescence spectra are independent of the nature of the modified nucleotides. The nucleotides on the 5'-side of the modified nucleotide have no effect on the fluorescence spectra, whereas the natures of the two nucleotides on the 3'-side are important: CC, CG, and UC dinucleotide units on the 3'-side of the modified nucleotide provide the maximum increases in excimer fluorescence intensity. This study suggests that these 2'-bispyrene-labeled 2'-O-methyl RNA probes might be useful tools for detection of RNAs.


Assuntos
Corantes Fluorescentes/síntese química , Pirenos/química , Sondas RNA/química , RNA/química , DNA/química , Fluorescência , Nucleotídeos/química , Pirenos/síntese química , Sondas RNA/síntese química , Espectrometria de Fluorescência
11.
ACS Appl Mater Interfaces ; 6(3): 1454-61, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24397536

RESUMO

Novel hybrids of fluorescein-labeled poly(ethylene glycol)-modified single-walled carbon nanotubes (SWCNTs) with nucleic acids were prepared. 5'-Pyrene conjugates of oligodeoxyribonucleotides were used to construct the noncovalent hybrids, with the pyrene residues acting as anchor groups, immobilizing an oligonucleotide on the SWCNT surface. The hybrid formation characteristics were studied using ζ-potential measurements and adsorption isotherm plots. Transmission electron microscopy (TEM) of the samples stained with contrast agents proved that the pyrene conjugates of oligonucleotides were adsorbed onto the surfaces of the functionalized SWCNTs. On the basis of the MTT assay, the functionalized SWCNTs and their hybrids with oligonucleotides exhibited low toxicity toward HeLa, KB-3-1, and KB-8-5 cells. A TEM study of ultrathin sections of cells treated with SWCNTs revealed that the nanotubes directly interacted with the cellular surface.


Assuntos
Nanotubos de Carbono/química , Ácidos Nucleicos/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura , Oligonucleotídeos/química , Pirenos/química , Espectrometria de Fluorescência , Eletricidade Estática
12.
Molecules ; 18(12): 15357-97, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24335616

RESUMO

This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.


Assuntos
Corantes Fluorescentes/química , Imagem Molecular/métodos , Ácidos Nucleicos/química , DNA/química , DNA/metabolismo , Imunofluorescência , Corantes Fluorescentes/metabolismo , Hibridização in Situ Fluorescente , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Microscopia de Fluorescência , Ácidos Nucleicos/metabolismo , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/metabolismo , RNA/química , RNA/metabolismo , Coloração e Rotulagem
13.
J Nucleic Acids ; 2013: 860457, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24455205

RESUMO

Here we report design, synthesis and characterization of highly sensitive, specific and stable in biological systems fluorescent probes for point mutation detection in DNA. The tandems of 3'- and 5'-mono- and bis-pyrene conjugated oligo(2'-O-methylribonucleotides), protected by 3'-"inverted" thymidine, were constructed and their potential as new instruments for genetic diagnostics was studied. Novel probes have been shown to exhibit an ability to form stable duplexes with DNA target due to the stabilizing effect of multiple pyrene units at the junction. The relationship between fluorescent properties of developed probes, the number of pyrene residues at the tandem junction, and the location of point mutation has been studied. On the basis of the data obtained, we have chosen the probes possessing the highest fluorescence intensity along with the best mismatch discrimination and deletion and insertion detection ability. Application of developed probes for detection of polymorphism C677T in MTHFR gene has been demonstrated on model systems.

14.
Artigo em Inglês | MEDLINE | ID: mdl-18066907

RESUMO

We have developed a new method for the preparation of oligodeoxyribonucleotides and oligo(2'-O-methylribonucleotides) that contain a 2'-phosphorylated ribonucleoside residue, and optimized it to avoid 2' -3' -isomerization and chain cleavage. Structures of the 2' -phosphorylated oligonucleotides were confirmed by MALDI-TOF MS and enzymatic digestion, and the stability of their duplexes with DNA and RNA was investigated. 2'-Phosphorylated oligonucleotides may be useful intermediates for the introduction of various chemical groups for a wide range of applications.


Assuntos
Química Orgânica/métodos , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Fosforilação
15.
J Biomol Struct Dyn ; 25(1): 61-76, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17676939

RESUMO

Two hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.p. DNA fragment containing (A/T)(n)X(m)(A/T)(p) sequences, where n>3, p>3; m=1,2; X = A,T,G, or C. Binding affinity depended on the sequence context of the target. CD experiments and molecular modeling showed that oligo(N-methylpyrrole)carboxamide moieties in the complex form two short antiparallel hairpins rather than a long parallel head-to-head hairpin. Binding of bis-MGB also stabilized a target duplex thermodynamically. Sequence specificity of bis-MGB/DNA binding was validated using bis-conjugates of sequence-specific hairpin (N-methylpyrrole)/(N-methylimidazole) carboxamides. In order to increase the size of recognition sequence, the conjugates of bis-MGB with triplex-forming oligonucleotides (TFO) were synthesized and compared to TFO conjugated with single MGB hairpin unit. Bis-MGB-oligonucleotide conjugates also bind to two blocks of three and more A.T/T.A pairs similarly to bis-MGB alone, independently of the oligonucleotide moiety, but with lower affinity. However, the role of TFO in DNA recognition was demonstrated for mono-MGB-TFO conjugate where the binding was detected mainly in the area of the target sequence consisting of both MGB and TFO recognition sites. Basing on the molecular modeling, three-dimensional models of both target DNA/bis-MGB and target DNA/TFO-bis-MGB complexes were built, where bis-MGB forms two antiparallel hairpins. According to the second model, one MGB hairpin is in the minor groove of 5'-adjacent A/T sequence next to the triplex-forming region, whereas the other one occupies the minor groove of the TFO binding polypurine tract. All these data together give a key information for the construction of MGB-MGB and MGB-oligonucleotide conjugates possessing high specificity and affinity for the target double-stranded DNA.


Assuntos
DNA , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Amidas/química , Sequência de Bases , Dicroísmo Circular , DNA/química , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Oligonucleotídeos/genética , Organofosfatos/química
16.
Chem Biodivers ; 2(7): 936-52, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17193185

RESUMO

New conjugates of triplex-forming pyrimidine oligo(2'-O-methylribonucleotides) with one or two 'head-to-head' hairpin oligo(N-methylpyrrole carboxamide) minor-groove binders (MGBs) attached to the terminal phosphate of the oligonucleotides with a oligo(ethylene glycol) linker were synthesized. It was demonstrated that, under appropriate conditions, the conjugates form stable complexes with double-stranded DNA (dsDNA) similarly to triplex-forming oligo(deoxyribonucleotide) (TFO) conjugates containing 5-methylated cytosines. Kinetic and thermodynamic parameters of the complex formation were evaluated by gel-shift assay and thermal denaturation. Higher melting temperatures (Tm), faster complex formation, and lower dissociation constants (Kd) of the triple helices (6-7 nM) were observed for complexes of MGB-oligo(2'-O-methylribonucleotide) conjugates with the target dsDNA compared to the nonconjugated individual components. Interaction of MGB moieties with the HIV proviral DNA fragment was indicated by UV/VIS absorption changes at 320 nm in the melting curves. The introduction of thymidine via a 3',3'-type 'inverted' phosphodiester linkage at the 3'-end of oligo(2'-O-methylribonucleotide) conjugates (3'-protection) had no strong influence on triplex formation, but slightly affected complex stability. At pH 6.0, when one or two hairpin MGBs were attached to the oligonucleotide, both triplex formation and minor-groove binding played important roles in complex formation. When two 'head-to-head' oligo(N-methylpyrrole) ligands were attached to the same terminal phosphate of the oligonucleotide or the linker, binding was observed at pH >7.5 and at high temperatures (up to 74 degrees). However, under these conditions, binding was retained only by the MGB part of the conjugate.


Assuntos
DNA/química , Imidazóis/química , Oligorribonucleotídeos/química , Sequência de Bases , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligorribonucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...