Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(18): 8076-8085, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661729

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have received increased attention due to their environmental prevalence and threat to public health. Trifluoroacetic acid (TFA) is an ultrashort-chain PFAS and the simplest perfluorocarboxylic acid (PFCA). While the US EPA does not currently regulate TFA, its chemical similarity to other PFCAs and its simple molecular structure make it a suitable model compound for studying the transformation of PFAS. We show that hydrothermal processing in compressed liquid water transforms TFA at relatively mild conditions (T = 150-250 °C, P < 30 MPa), initially yielding gaseous products, such as CHF3 and CO2, that naturally aspirate from the solution. Alkali amendment (e.g., NaOH) promotes the mineralization of CHF3, yielding dissolved fluoride, formate, and carbonate species as final products. Fluorine and carbon balances are closed using Raman spectroscopy and fluoride ion selective electrode measurements for experiments performed at alkaline conditions, where gas yields are negligible. Qualitative FTIR gas analysis allows for establishing the transformation pathways; however, the F-balance could not be quantitatively closed for experiments without NaOH amendment. The kinetics of TFA transformation under hydrothermal conditions are measured, showing little to no dependency on NaOH concentration, indicating that the thermal decarboxylation is a rate-limiting step. A proposed TFA transformation mechanism motivates additional work to generalize the hydrothermal reaction pathways to other PFCAs.


Assuntos
Ácido Trifluoracético , Ácido Trifluoracético/química , Água/química , Halogenação
2.
Chemosphere ; 327: 138358, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906000

RESUMO

Cleanup and disposal of stockpiles and waste streams containing per- and polyfluoroalkyl substances (PFAS) require effective end-of-life destruction/mineralization technologies. Two classes of PFAS, perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs), are commonly found in legacy stockpiles, industrial waste streams, and as environmental pollutants. Continuous flow supercritical water oxidation (SCWO) reactors have been shown to destroy several PFAS and aqueous film-forming foams. However, a direct comparison of the SCWO efficacy for PFSAs and PFCAs has not been reported. We show the effectiveness of continuous flow SCWO treatment for a matrix of model PFCAs and PFSAs as a function of operating temperature. PFSAs appear to be significantly more recalcitrant than PFCAs in the SCWO environment. The SCWO treatment results in a destruction and removal efficiency of 99.999% at a T > 610 °C and at a residence time of ∼30 s. Fluoride recovery lags destruction PFAS at 510 °C and reaches >100% above 610 °C, confirming the formation of liquid and gaseous phase intermediate product during lower temperature oxidation. This paper establishes the threshold for destroying PFAS-containing liquids under SCWO conditions.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Temperatura , Água , Ácidos Carboxílicos , Ácidos Sulfônicos , Poluentes Químicos da Água/análise , Fluorocarbonos/análise
3.
Chemosphere ; 314: 137681, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584826

RESUMO

As regulations are being established to limit the levels of per- and polyfluoroalkyl substances (PFAS) in drinking water and wastewater, effective treatment technologies are needed to remove or destroy PFAS in contaminated liquid matrices. Many military installations and airports have fire training ponds (FTPs) where PFAS-containing firefighting foams are discharged during training drills. FTP water disposal is expensive and challenging due to the high PFAS levels. Hydrothermal alkaline treatment (HALT) has previously been shown to destroy a wide range of PFAS compounds with a high degree of destruction and defluorination. In this study, we investigate the performance of a continuous flow HALT reactor for destroying PFAS in contaminated FTP water samples. Processing with 5 M-NaOH and 1.6 min of continuous processing results in >99% total PFAS destruction, and 10 min processing time yields >99% destruction of every measured PFAS species. Operating with 0.1 M-NaOH or 1 M-NaOH shows little effect on the destruction of measured perfluorosulfonic acids, while all measured perfluorocarboxylic acids and fluorotelomer sulfonates are reduced to levels below the method detection limits. Continuous HALT processing with sufficient NaOH loading appears to destroy parent PFAS compounds significantly faster than batch HALT processing, a positive indicator for scaling up HALT technology for practical applications in environmental site remediation activities.


Assuntos
Água Potável , Recuperação e Remediação Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Água , Hidróxido de Sódio , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
4.
Heliyon ; 8(12): e12242, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36578385

RESUMO

A novel single-stage solvolysis process is demonstrated for recycling carbon fibers from an epoxy-based composite material using 50 wt% acetic acid solution under subcritical conditions. The process yields 100% fiber recovery efficiency in less than 30 min at 300 °C. Qualitative SEM/EDS analysis of the fibers reveals that the recovered fibers are entirely free of resin, and the carbon fiber surfaces were not damaged. SEM images and gravimetric measurements of the composites treated at lower temperatures and short residence times show an initial increase in mass of the CFRP samples, suggesting a two-step process consisting of initial composite swelling due to uptake of solvent, followed by depolymerization and chemical decomposition of the polymer. FTIR and GC-MS analyses confirm resin decomposition and production of aromatic and aliphatic compounds.

5.
Chemosphere ; 307(Pt 2): 135888, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931254

RESUMO

PER: and polyfluoroalkyl substances (PFAS) are a concerning and unique class of environmentally persistent contaminants with biotoxic effects. Decades of PFAS discharge into water and soil resulted in PFAS bioaccumulation in plants, animals, and humans. PFAS are very stable, and their treatment has become a global environmental challenge. Significant efforts have been made to achieve efficient and complete PFAS mineralization using existing and emerging technologies. Hydrothermal treatments in subcritical and supercritical water have emerged as promising end-of-life PFAS destruction technologies, attracting the attention of scholars, industry, and key stakeholders. This paper reviews the state-of-the-art research on the behavior of PFAS, PFAS precursors, PFAS alternatives, and PFAS-containing waste in hydrothermal processes, including the destruction and defluorination efficiency, the proposed reaction mechanisms, and the environmental impact of these treatments. Scientific literature shows that >99% degradation and >60% defluorination of PFAS can be achieved through subcritical and supercritical water processing. The limitations of current research are evaluated, special considerations are given to the challenges of technology maturation and scale-up from laboratory studies to large-scale industrial application, and potential future technological developments are proposed.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Bioacumulação , Fluorocarbonos/análise , Humanos , Solo , Água , Poluentes Químicos da Água/análise
6.
Anal Chem ; 93(33): 11433-11441, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34379402

RESUMO

Aerosols dispersed and transmitted through the air (e.g., particulate matter pollution and bioaerosols) are ubiquitous and one of the leading causes of adverse health effects and disease transmission. A variety of sampling methods (e.g., filters, cyclones, and impactors) have been developed to assess personal exposures. However, a gap still remains in the accessibility and ease-of-use of these technologies for people without experience or training in collecting airborne samples. Additionally, wet scrubbers (large non-portable industrial systems) utilize liquid sprays to remove aerosols from the air; the goal is to "scrub" (i.e., clean) the exhaust of industrial smokestacks, not collect the aerosols for analysis. Inspired by wet scrubbers, we developed a device fundamentally different from existing portable air samplers by using aerosolized microdroplets to capture aerosols in personal spaces (e.g., homes, offices, and schools). Our aerosol-sampling device is the size of a small teapot, can be operated without specialized training, and features a winding flow path in a supersaturated relative humidity environment, enabling droplet growth. The integrated open mesofluidic channels shuttle coalesced droplets to a collection chamber for subsequent sample analysis. Here, we present the experimental demonstration of aerosol capture in water droplets. An iterative study optimized the non-linear flow manipulating baffles and enabled an 83% retention of the aerosolized microdroplets in the confined volume of our device. As a proof-of-concept for aerosol capture into a liquid medium, 0.5-3 µm model particles were used to evaluate aerosol capture efficiency. Finally, we demonstrate that the device can capture and keep a bioaerosol (bacteriophage MS2) viable for downstream analysis.


Assuntos
Levivirus , Material Particulado , Aerossóis/análise , Microbiologia do Ar , Monitoramento Ambiental , Humanos , Tamanho da Partícula
7.
Talanta ; 234: 122633, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364442

RESUMO

The detection of trace amounts of explosive materials is critical to the security at mass transit centers (e.g., airports and railway stations). In a typical screening process, a trap is used to probe a surface of interest to collect and transfer particulate residue to a detector for analysis. The collection of residues from the surface being probed is widely viewed as the limiting step in this process. A multi-institutional study was performed to establish a methodology for the evaluation of sampling media collection efficiencies. Dry deposited residues of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), C-4 (an RDX-based explosive), and pentaerythritol tetranitrate (PETN) were harvested from acrylonitrile butadiene styrene (ABS) plastic, ballistic nylon (NYL), and uncoated aluminum surfaces using muslin, Texwipe cotton, and stainless-steel mesh traps. Transfer and collection efficiencies of the sample media were calculated based on liquid chromatography-mass spectrometry analysis. Dry transfer efficiencies (DTE%) to all tested surfaces were greater than 75%, with transfer to ABS plastic being the lowest. Collection efficiency (CE%) varied significantly across the traps and the surfaces, yet some conclusions can be drawn; nylon had the lowest CE% for all cases (∼10%), and the stainless steel mesh had the lowest CE% for the evaluated traps (∼20%). Though the testing parameters have been standardized among the participants to establish a framework for an independent comparison of contact sampling media and surfaces, substantial variations in the DTE% and the CE% were observed, suggesting that other variables can affect contact sampling.


Assuntos
Substâncias Explosivas , Tetranitrato de Pentaeritritol , Humanos , Espectrometria de Massas , Têxteis , Triazinas
8.
Sensors (Basel) ; 21(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200380

RESUMO

Human exposure to infectious aerosols results in the transmission of diseases such as influenza, tuberculosis, and COVID-19. Most dental procedures generate a significant number of aerosolized particles, increasing transmission risk in dental settings. Since the generation of aerosols in dentistry is unavoidable, many clinics have started using intervention strategies such as area-filtration units and extraoral evacuation equipment, especially under the relatively recent constraints of the pandemic. However, the effectiveness of these devices in dental operatories has not been studied. Therefore, the ability of dental personnel to efficiently position and operate such instruments is also limited. To address these challenges, we utilized a real-time sensor network for assessment of aerosol dynamics during dental restoration and cleaning producers with and without intervention. The strategies tested during the procedures were (i) local area High-Efficiency Particle Air (HEPA) filters and (ii) Extra-Oral Suction Device (EOSD). The study was conducted at the University of Washington School of Dentistry using a network of 13 fixed sensors positioned within the operatory and one wearable sensor worn by the dental operator. The sensor network provides time and space-resolved particulate matter (PM) data. Three-dimensional (3D) visualization informed aerosol persistence in the operatory. It was found that area filters did not improve the overall aerosol concentration in dental offices in a significant way. A decrease in PM concentration by an average of 16% was observed when EOSD equipment was used during the procedures. The combination of real-time sensors and 3D visualization can provide dental personnel and facility managers with actionable feedback to effectively assess aerosol transmission in medical settings and develop evidence-based intervention strategies.


Assuntos
COVID-19 , Aerossóis , Humanos , Pandemias , Material Particulado , SARS-CoV-2
9.
Atmos Environ (1994) ; 2592021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321954

RESUMO

The link between particulate matter (PM) air pollution and negative health effects is well-established. Air pollution was estimated to cause 4.9 million deaths in 2017 and PM was responsible for 94% of these deaths. In order to inform effective mitigation strategies in the future, further study of PM and its health effects is important. Here, we present a method for identifying sources of combustion generated PM using excitation-emission matrix (EEM) fluorescence spectroscopy and machine learning (ML) algorithms. PM samples were collected during a health effects exposure assessment panel study in Seattle. We use archived field samples from the exposure study and the associated positive matrix factorization (PMF) source apportionment based on X-ray fluorescence and light absorbing carbon measurements to train convolutional neural network and principal component regression algorithms. We show EEM spectra from cyclohexane extracts of the archived filter samples can be used to accurately apportion mobile and vegetative burning sources but were unable to detect crustal dust, Cl-rich, secondary sulfate and fuel oil sources. The use of this EEM-ML approach may be used to conduct PM exposure studies that include source apportionment of combustion sources.

10.
Chemosphere ; 279: 130834, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134433

RESUMO

Effective technologies are needed for the destruction of per- and polyfluoroalkyl substances (PFAS). One promising technology is supercritical water oxidation (SCWO), which can be accommodated in batch or continuous reactors. Many PFAS-laden wastes consist primarily of solid particles, and batch SCWO processing may offer safe end-of-life PFAS destruction for these feedstocks. In this study, perfluorooctanesulfonate (PFOS) is reacted via supercritical water oxidation in a batch reactor at temperatures between 425 and 500 °C and residence times from 0 to 60 min, to determine the effect of both parameters on the extent of destruction and defluorination. Analysis of liquid products via targeted LC-QToF-MS does not indicate production of intermediate fluorocarbons. However, a low fluorine mass balance at temperatures of 425 and 450 °C may indicate the existence of fluorinated species in the gaseous and/or liquid product which are not detected by targeted analysis. Destruction and defluorination efficiencies are determined for each tested condition, with a maximum 70.0% PFOS destruction and 78.2% defluorination achieved after 60 min of reaction at 500 °C.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Oxirredução , Água
11.
Talanta ; 231: 122356, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965023

RESUMO

Surface sampling for trace explosives residues is a critical step in the security screening in which microparticles are collected for subsequent chemical analysis. The current surface swabbing approach suffers from limited sampling area coverage, uncertainty in harvesting efficiencies, and user bias. Non-contact sampling has received interest due to its ability to interrogate large surface areas without the redeposition of the collected sample. However, the aerodynamic liberation of energetic particles from different types of substrates has not been parameterized or directly compared with the contact sampling methods. Here, we report aerodynamic resuspension rates of TNT, RDX, and HMX microparticles from smooth, rough, and fibrous surfaces. The resuspension thresholds are correlated to the boundary layer properties, i.e., wall shear stresses (τw = 50-500Pa). These rates are then compared to contact sampling for five commercial swabs using a standardized swabbing method. LC-MS analysis is used for the quantification of particle removal efficiencies. Contact sampling has an advantage over the low shear stress cases for particle liberation from the smooth surfaces. Aerodynamic particle resuspension rates increase with the wall shear stress. It shows better results for rough and fibrous surfaces than contact removal for tested analytes.

12.
Sensors (Basel) ; 21(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924812

RESUMO

Digital microfluidics (DMF) devices enable precise manipulation of small liquid volumes in point-of-care testing. A printed circuit board (PCB) substrate is commonly utilized to build DMF devices. However, inkjet printing can be used to fabricate DMF circuits, providing a less expensive alternative to PCB-based DMF designs while enabling more rapid design iteration cycles. We demonstrate the cleanroom-free fabrication process of a low-cost inkjet-printed DMF circuit. We compare Kapton and polymethyl methacrylate (PMMA) as dielectric coatings by measuring the minimal droplet actuation voltage for a range of actuation frequencies. A minimum actuation voltage of 5.6 V was required for droplet movement with the PMMA layer thickness of 0.2 µm and a hydrophobic layer of 0.17 µm. Significant issues with PMMA dielectric breakdown were observed at actuation voltages above 10 V. In comparison, devices that utilized Kapton were found to be more robust, even at an actuation voltage up to 100 V.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica
13.
J Phys Chem A ; 124(41): 8383-8389, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933254

RESUMO

Dimethyl methylphosphonate (DMMP) is often used as a chemical surrogate for organophosphate nerve agents, as it exhibits similar physiochemical properties while having significantly lower toxicity. Continuous hydrolysis of DMMP in hot-compressed water is performed at temperatures from 200 to 300 °C, pressures of 20 and 30 MPa, and residence times from 30 to 80 s to evaluate the effects of pressure and temperature on reaction kinetics. DMMP hydrolysis is observed to follow pseudo-first-order reaction behavior, producing methylphosphonic acid and methanol as the only detectable reaction products. This is significant for the practical implementation of a continuous hydrothermal reactor for chemical warfare agent neutralization, as the process only yields stable, less-toxic compounds. Pressure has no discernible effect on the hydrolysis rate in compressed liquid water. Pseudo-first-order Arrhenius parameters are determined, with an activation energy of 90.17 ± 5.68 kJ/mol and a pre-exponential factor of 107.51±0.58 s-1.

14.
Sensors (Basel) ; 20(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549356

RESUMO

Diabetes is a global epidemic that impacts millions of people every year. Enhanced dietary assessment techniques are critical for maintaining a healthy life for a diabetic patient. Moreover, hospitals must monitor their diabetic patients' food intake to prescribe a certain amount of insulin. Malnutrition significantly increases patient mortality, the duration of the hospital stay, and, ultimately, medical costs. Currently, hospitals are not fully equipped to measure and track a patient's nutritional intake, and the existing solutions require an extensive user input, which introduces a lot of human errors causing endocrinologists to overlook the measurement. This paper presents DietSensor, a wearable three-dimensional (3D) measurement system, which uses an over the counter 3D camera to assist the hospital personnel with measuring a patient's nutritional intake. The structured environment of the hospital provides the opportunity to have access to the total nutritional data of any meal prepared in the kitchen as a cloud database. DietSensor uses the 3D scans and correlates them with the hospital kitchen database to calculate the exact consumed nutrition by the patient. The system was tested on twelve volunteers with no prior background or familiarity with the system. The overall calculated nutrition from the DietSensor phone application was compared with the outputs from the 24-h dietary recall (24HR) web application and MyFitnessPal phone application. The average absolute error on the collected data was 73%, 51%, and 33% for the 24HR, MyFitnessPal, and DietSensor systems, respectively.


Assuntos
Diabetes Mellitus , Dieta , Ingestão de Alimentos , Dispositivos Eletrônicos Vestíveis , Humanos , Refeições , Estado Nutricional
15.
Atmos Environ (1994) ; 2202020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32256182

RESUMO

The inhalation of particulate matter (PM) is a significant health risk associated with reduced life expectancy due to increased cardio-pulmonary disease and exacerbation of respiratory diseases such as asthma and pneumonia. PM originates from natural and anthropogenic sources including combustion engines, cigarettes, agricultural burning, and forest fires. Identifying the source of PM can inform effective mitigation strategies and policies, but this is difficult to do using current techniques. Here we present a method for identifying PM source using excitation emission matrix (EEM) fluorescence spectroscopy and a machine learning algorithm. We collected combustion generated PM2.5 from wood burning, diesel exhaust, and cigarettes using filters. Filters were weighted to determine mass concentration followed by extraction into cyclohexane and analysis by EEM fluorescence spectroscopy. Spectra obtained from each source served as training data for a convolutional neural network (CNN) used for source identification in mixed samples. This method can predict the presence or absence of the three laboratory sources with an overall accuracy of 89% when the threshold for classifying a source as present is 1.1 µg/m3 in air over a 24-hour sampling time. The limit of detection for cigarette, diesel and wood are 0.7, 2.6, 0.9 µg/m3, respectively, in air assuming a 24-hour sampling time at an air sampling rate of 1.8 liters per minute. We applied the CNN algorithm developed using the laboratory training data to a small set of field samples and found the algorithm was effective in some cases but would require a training data set containing more samples to be more broadly applicable.

16.
Data Brief ; 29: 105312, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32140521

RESUMO

The spectra presented correspond with the research article entitled "Kinetics of Formic Acid Decomposition in Subcritical and Supercritical Water - A Raman Spectroscopic Study" [1]. Data set contains in situ Raman spectra of the quenched effluent stream, which includes varied concentrations of formic acid, water, CO, CO2, and H2 as reaction products. Each spectrum is collected downstream of the subcritical or supercritical water gasification of formic acid, which occurs at a specified temperature, residence time, a constant pressure of 25 MPa, and a constant initial feedstock concentration of 3.6 wt% formic acid. Additionally, calibration spectra of formic acid in water, and spectra of pure carbon dioxide and high concentration formic acid are provided for model development. Finally, a MATLAB code used for baseline subtraction of raw data files is included with the dataset. The full dataset is hosted in Mendeley Data, https://doi.org/10.17632/hjn8xwskng.1.

17.
Heliyon ; 5(2): e01269, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30886924

RESUMO

Optimizing an industrial-scale supercritical water gasification process requires detailed knowledge of chemical reaction pathways, rates, and product yields. Laboratory-scale reactors are employed to develop this knowledge base. The rationale behind designs and component selection of continuous flow, laboratory-scale supercritical water gasification reactors is analyzed. Some design challenges have standard solutions, such as pressurization and preheating, but issues with solid precipitation and feedstock pretreatment still present open questions. Strategies for reactant mixing must be evaluated on a system-by-system basis, depending on feedstock and experimental goals, as mixing can affect product yields, char formation, and reaction pathways. In-situ Raman spectroscopic monitoring of reaction chemistry promises to further fundamental knowledge of gasification and decrease experimentation time. High-temperature, high-pressure spectroscopy in supercritical water conditions is performed, however, long-term operation flow cell operation is challenging. Comparison of Raman spectra for decomposition of formic acid in the supercritical region and cold section of the reactor demonstrates the difficulty in performing quantitative spectroscopy in the hot zone. Future designs and optimization of continuous supercritical water gasification reactors should consider well-established solutions for pressurization, heating, and process monitoring, and effective strategies for mixing and solids handling for long-term reactor operation and data collection.

18.
Nanotechnology ; 29(33): 335304, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-29808828

RESUMO

Single-walled carbon nanotubes (SWCNTs) are used as a key component for chemical sensors. For miniature scale design, a continuous printing method is preferred for electrical conductance without damaging the substrate. In this paper, a non-contact capillary pen printing method is presented by the formation of a nanoink bridge between the nib of a capillary pen and a polyethylene terephthalate film. A critical parameter for stable printing is the advancing contact angle at the bridge meniscus, which is a function of substrate temperature and printing speed. The printed pattern including dots, lines, and films of SWCNTs are characterized by morphology, optical transparency, and electrical properties. Gas and pH sensors fabricated using the non-contact printing method are demonstrated as applications.

19.
Aerosol Sci Technol ; 51(9): 1016-1026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30739977

RESUMO

Aerosol sampling and identification is vital for the assessment and control of particulate matter pollution, airborne pathogens, allergens, and toxins and their effect on air quality, human health, and climate change. In-situ analysis of chemical and biological airborne components of aerosols on a conventional filter is challenging due to dilute samples in a large collection region. We present the design and evaluation of a micro-well (µ-well) aerosol collector for the assessment of airborne particulate matter (PM) in the 0.5-3 micron size range. The design minimizes particle collection areas allowing for in-situ optical analysis and provides an increased limit of detection for liquid-based assays due to the high concentrations of analytes in the elution/analysis volume. The design of the collector is guided by computational fluid dynamics (CFD) modeling; it combines an aerodynamic concentrator inlet that focuses the aspirated aerosol into a narrow beam and a µ-well collector that limits the particle collection area to the µ-well volume. The optimization of the collector geometry and the operational conditions result in high concentrations of collected PM in the submillimeter region inside the µ-well. Collection efficiency experiments are performed in the aerosol chamber using fluorescent polystyrene microspheres to determine the performance of the collector as a function of particle size and sampling flow rate. The collector has the maximum collection efficiency of about 75% for 1 micron particles for the flow rate of 1 slpm. Particles bigger than 1 micron have lower collection efficiencies because of particle bounce and particle loss in the aerodynamic focusing inlet. Collected samples can be eluted from the device using standard pipettes, with an elution volume of 10-20 microliters. The transparent collection substrate and the distinct collection region, independent of particle size, allows for in-situ optical analysis of the collected PM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...