Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 30(5): 2602-2612, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437104

RESUMO

This work reports how text size and other rendering conditions affect reading speeds in a virtual reality environment and a scientific data analysis application. Displaying text legibly yet space-efficiently is a challenging problem in immersive displays. Effective text displays that enable users to read at their maximum speed must consider the variety of virtual reality (VR) display hardware and possible visual exploration tasks. We investigate how text size and display parameters affect reading speed and legibility in three state-of-the-art VR displays: two head-mounted displays and one CAVE. In our perception experiments, we establish limits where reading speed declines as the text size approaches the so-called critical print sizes (CPS) of individual displays, which can inform the design of uniform reading experiences across different VR systems. We observe an inverse correlation between display resolution and CPS. Yet, even in high-fidelity VR systems, the measured CPS was larger than in comparable physical text displays, highlighting the value of increased VR display resolutions in certain visualization scenarios. Our findings indicate that CPS can be an effective metric for evaluating VR display usability. Additionally, we evaluate the effects of text panel placement, orientation, and occlusion-reducing rendering methods on reading speeds in generic volumetric particle visualizations. Our study provides insights into the trade-off between text representation and legibility in cluttered immersive environments with specific suggestions for visualization designers and highlight areas for further research.

2.
J Morphol ; 282(12): 1785-1800, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34689352

RESUMO

Virtual and augmented reality (VR/AR) are new technologies with the power to revolutionize the study of morphology. Modern imaging approaches such as computed tomography, laser scanning, and photogrammetry have opened up a new digital world, enabling researchers to share and analyze morphological data electronically and in great detail. Because this digital data exists on a computer screen, however, it can remain difficult to understand and unintuitive to interact with. VR/AR technologies bridge the analog-to-digital divide by presenting 3D data to users in a very similar way to how they would interact with actual anatomy, while also providing a more immersive experience and greater possibilities for exploration. This manuscript describes VR/AR hardware, software, and techniques, and is designed to give practicing morphologists and educators a primer on using these technologies in their research, pedagogy, and communication to a wide variety of audiences. We also include a series of case studies from the presentations and workshop given at the 2019 International Congress of Vertebrate Morphology, and suggest best practices for the use of VR/AR in comparative morphology.


Assuntos
Realidade Aumentada , Realidade Virtual , Animais , Tomografia Computadorizada por Raios X
3.
IEEE Trans Vis Comput Graph ; 27(12): 4359-4373, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32746274

RESUMO

We present exploratory research of virtual reality techniques and mnemonic devices to assist in retrieving knowledge from scholarly articles. We used abstracts of scientific publications to represent knowledge in scholarly articles; participants were asked to read, remember, and retrieve knowledge from a set of abstracts. We conducted an experiment to compare participants' recall and recognition performance in three different conditions: a control condition without a pre-specified strategy to test baseline individual memory ability, a condition using an image-based variant of a mnemonic called a "memory palace," and a condition using a virtual reality-based variant of a memory palace. Our analyses show that using a virtual reality-based memory palace variant greatly increased the amount of knowledge retrieved and retained over the baseline, and it shows a moderate improvement over the other image-based memory palace variant. Anecdotal feedback from participants suggested that personalizing a memory palace variant would be appreciated. Our results support the value of virtual reality for some high-level cognitive tasks and help improve future applications of virtual reality and visualization.

4.
IEEE Comput Graph Appl ; 40(1): 28-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30582530

RESUMO

We present a case study evaluating the potential for interactively identifying placental surface blood vessels using magnetic resonance imaging (MRI) scans in virtual reality (VR) environments. We visualized the MRI data using direct volume rendering in a high-fidelity CAVE-like VR system, allowing medical professionals to identify relevant placental vessels directly from volume visualizations in the VR system, without prior vessel segmentation. Participants were able to trace most of the observable vascular structure, and consistently identified blood vessels down to diameters of 1 mm, an important requirement in diagnosing vascular diseases. Qualitative feedback from our participants suggests that our VR visualization is easy to understand and allows intuitive data exploration, but complex user interactions remained a challenge. Using these observations, we discuss implications and requirements for spatial tracing user interaction methods in VR environments. We believe that VR MRI visualizations are the next step towards effective surgery planning for prenatal diseases.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Placenta/irrigação sanguínea , Realidade Virtual , Feminino , Humanos , Imageamento por Ressonância Magnética , Gravidez
5.
IEEE Trans Vis Comput Graph ; 25(5): 2145-2154, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30908229

RESUMO

We present the results of a two-year design study to developing virtual reality (VR) flow visualization tools for the analysis of dinosaur track creation in a malleable substrate. Using Scientific Sketching methodology, we combined input from illustration artists, visualization experts, and domain scientists to create novel visualization methods. By iteratively improving visualization concepts at multiple levels of abstraction we helped domain scientists to gain insights into the relationship between dinosaur foot movements and substrate deformations. We involved over 20 art and computer science students from a VR design course in a rapid visualization sketching cycle, guided by our paleontologist collaborators through multiple critique sessions. This allowed us to explore a wide range of potential visualization methods and select the most promising methods for actual implementation. Our resulting visualization methods provide paleontologists with effective tools to analyze their data through particle, pathline and time surface visualizations. We also introduce a set of visual metaphors to compare foot motion in relation to substrate deformation by using pathsurfaces. This is one of the first large-scale projects using Scientific Sketching as a development methodology. We discuss how the research questions of our collaborators have evolved during the sketching and prototyping phases. Finally, we provide lessons learned and usage considerations for Scientific Sketching based on the experiences gathered during this project.


Assuntos
Gráficos por Computador , Dinossauros/fisiologia , Imageamento Tridimensional/métodos , Locomoção/fisiologia , Realidade Virtual , Animais , Arte , Humanos , Óculos Inteligentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...