Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 12(6): 545, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039962

RESUMO

Transplantation of bone marrow (BM) is made possible by the differential sensitivity of its stromal and hematopoietic components to preconditioning by radiation and/or chemotherapeutic drugs. These genotoxic treatments eliminate host hematopoietic precursors by inducing p53-mediated apoptosis but keep the stromal niche sufficiently intact for the engraftment of donor hematopoietic cells. We found that p53-null mice cannot be rescued by BM transplantation (BMT) from even the lowest lethal dose of total body irradiation (TBI). We compared structural changes in BM stroma of mice differing in their p53 status to understand why donor BM failed to engraft in the irradiated p53-null mice. Irradiation did not affect the general structural integrity of BM stroma and induced massive expression of alpha-smooth muscle actin in mesenchymal cells followed by increased adiposity in p53 wild-type mice. In contrast, none of these events were found in p53-null mice, whose BM stroma underwent global structural damage following TBI. Similar differences in response to radiation were observed in in vitro-grown bone-adherent mesenchymal cells (BAMC): p53-null cells underwent mitotic catastrophe while p53 wild-type cells stayed arrested but viable. Supplementation with intact BAMC of either genotype enabled donor BM engraftment and significantly extended longevity of irradiated p53-null mice. Thus, successful preconditioning depends on the p53-mediated protection of cells critical for the functionality of BM stroma. Overall, this study reveals a dual positive role of p53 in BMT: it drives apoptotic death of hematopoietic cells and protects BM stromal cells essential for its functionality.


Assuntos
Medula Óssea/fisiopatologia , Células-Tronco Hematopoéticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células , Camundongos
2.
Cancer Biol Ther ; 14(12): 1182-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24184801

RESUMO

Mammalian or mechanistic target of rapamycin (mTOR) is involved in growth, aging, and age-related diseases including cancer. There is an extensive cross talk between p53 and mTOR. In cell culture, p53 inhibits the mTOR pathway in a cell type-dependent manner. p53-deficient mice develop pro-inflammation and cancer. We have shown that rapamycin delayed cancer and extended lifespan, thus partially substituting for p53. Here we show that a marker of mTOR activity, phosphorylated S6 (p-S6), is increased in the hearts of p53-deficient mice. Furthermore, cardiac p-S6 correlated with body weight. Also, p53(-/-) mice were slightly hyperinsulinemic with a tendency to elevated IGF-1. Radiation exacerbated the difference between IGF-1 levels in normal and p53(-/-) mice. Noteworthy, radiation induced Thr-308 Akt phosphorylation in the livers (but not in the hearts) of both p53(+/+) and p53(-/-) mice. Simultaneously, radiation decreased p-S6 in the livers of normal mice, consistent with the negative effect of p53 on mTOR. Our data indicate that the activity of mTOR is increased in some but not all tissues of p53(-/-) mice, associated with the tendency to increased insulin and IGF-1 levels. Therefore, the absence of p53 may create oncophilic microenvironment, favoring cancer.


Assuntos
Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Fígado/metabolismo , Camundongos Knockout , Miocárdio/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 110(1): E89-98, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23236145

RESUMO

Large parts of mammalian genomes are transcriptionally inactive and enriched with various classes of interspersed and tandem repeats. Here we show that the tumor suppressor protein p53 cooperates with DNA methylation to maintain silencing of a large portion of the mouse genome. Massive transcription of major classes of short, interspersed nuclear elements (SINEs) B1 and B2, both strands of near-centromeric satellite DNAs consisting of tandem repeats, and multiple species of noncoding RNAs was observed in p53-deficient but not in p53 wild-type mouse fibroblasts treated with the DNA demethylating agent 5-aza-2'-deoxycytidine. The abundance of these transcripts exceeded the level of ß-actin mRNA by more than 150-fold. Accumulation of these transcripts, which are capable of forming double-stranded RNA (dsRNA), was accompanied by a strong, endogenous, apoptosis-inducing type I IFN response. This phenomenon, which we named "TRAIN" (for "transcription of repeats activates interferon"), was observed in spontaneous tumors in two models of cancer-prone mice, presumably reflecting naturally occurring DNA hypomethylation and p53 inactivation in cancer. These observations suggest that p53 and IFN cooperate to prevent accumulation of cells with activated repeats and provide a plausible explanation for the deregulation of IFN function frequently seen in tumors. Overall, this work reveals roles for p53 and IFN that are key for genetic stability and therefore relevant to both tumorigenesis and the evolution of species.


Assuntos
Metilação de DNA , Repressão Epigenética/fisiologia , Interferon Tipo I/metabolismo , RNA não Traduzido/genética , Sequências Repetitivas de Ácido Nucleico/genética , Proteína Supressora de Tumor p53/genética , Actinas/genética , Animais , Azacitidina/análogos & derivados , Biologia Computacional , Decitabina , Repressão Epigenética/genética , Camundongos , Análise em Microsséries , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/deficiência
4.
Aging (Albany NY) ; 4(10): 709-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23123616

RESUMO

TOR (Target of Rapamycin) pathway accelerates cellular and organismal aging. Similar to rapamycin, p53 can inhibit the mTOR pathway in some mammalian cells. Mice lacking one copy of p53 (p53+/- mice) have an increased cancer incidence and a shorter lifespan. We hypothesize that rapamycin can delay cancer in heterozygous p53+/- mice. Here we show that rapamycin (given in a drinking water) extended the mean lifespan of p53+/- mice by 10% and when treatment started early in life (at the age less than 5 months) by 28%. In addition, rapamycin decreased the incidence of spontaneous tumors. This observation may have applications in management of Li-Fraumeni syndrome patients characterized by heterozygous mutations in the p53 gene.


Assuntos
Genes p53 , Longevidade/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Transformação Celular Neoplásica/efeitos dos fármacos , Feminino , Síndrome de Li-Fraumeni/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Cell Cycle ; 9(7): 1434-43, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20404530

RESUMO

It has been shown that genetic inhibition of p53 leads to enhanced proliferation of hematopoietic stem cells (HSCs). This could, in theory, contribute to the increased frequency of tumor development observed in p53-deficient mice and humans. In our previous work, we identified chemical p53 inhibitors (PFTs) that suppress the transactivation function of p53 and protect cultured cells and mice from death induced by gamma irradiation (IR). Here we found that when applied to bone marrow cells in vitro or injected into mice, PFTb impeded IR-induced reduction of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) population sizes. In addition, we showed that PFTb stimulated HSC and HPC proliferation in the absence of IR in vitro and in vivo and mobilized HSCs to the peripheral blood. Importantly, however, PFTb treatment did not affect the timing or frequency of tumor development in irradiated p53 heterozygous mice used as a model for determination of carcinogenicity. Thus, although PFTb administration led to increased numbers of HSCs and HPCs, it was not carcinogenic in mice. These findings suggest that chemical p53 inhibitors may be clinically useful as safe and effective stimulators of hematopoiesis.


Assuntos
Benzotiazóis/farmacologia , Células-Tronco Hematopoéticas/citologia , Neoplasias/patologia , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Raios gama , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neoplasias/metabolismo , Tolueno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...