Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 439: 129588, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35850070

RESUMO

In this study, seven different materials were analyzed and includes coffee grounds (CG), two types of cellulose (CGC and CC), two types of modified cellulose (CT and CTCD), and cross-linked ß-cyclodextrin (CD-1 and CD-2) were tested as adsorbents for the removal of dyes from the wastewater. The composition, morphology, and presence of functional groups in the obtained sorption materials were characterized by elemental analysis, SEM, TG/DTA, and FTIR spectroscopy. The sorption processes of the model contaminant, crystal violet (CV), were studied by kinetics and equilibrium models. The results showed, that using CTCD, the dye was adsorbed rapidly in 1 min and the slowest adsorption occurred in 20 min by CG. The time evolution was adjusted using a two-model, pseudo second-order model (CG and CGC) and pseudo first-order model in the rest adsorbents. According to the Langmuir and Sips isotherm models, the maximum adsorption capacities were very high in each case ranging from 1092.24 to 1220.40 mg g-1. Moreover, the adsorption capacity of the near-natural materials remained even higher after five regeneration cycles. The regeneration is almost waste-free and the materials used can be decomposed during composting. In addition, almost complete removal of cationic dyes was observed during the treatment of real wastewater samples.


Assuntos
Poluentes Químicos da Água , beta-Ciclodextrinas , Adsorção , Cátions , Celulose/química , Café , Corantes/química , Concentração de Íons de Hidrogênio , Cinética , Desenvolvimento Sustentável , Águas Residuárias/química , Poluentes Químicos da Água/química
2.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745921

RESUMO

Water is an essential substance for the survival on Earth of all living organisms. However, population growth has disturbed the natural phenomenon of living, due to industrial growth to meet ever expanding demands, and, hence, an exponential increase in environmental pollution has been reported in the last few decades. Moreover, water pollution has drawn major attention for its adverse effects on human health and the ecosystem. Various techniques have been used to treat wastewater, including biofiltration, activated sludge, membrane filtration, active oxidation process and adsorption. Among the mentioned, the last method is becoming very popular. Moreover, among the sorbents, those based on cyclodextrin have gained worldwide attention due to their excellent properties. This review article overviewed recent contributions related to the synthesis of Cyclodextrin (CD)-based adsorbents to treat wastewater, and their applications, especially for the removal of heavy metals, dyes, and organic pollutants (pharmaceuticals and endocrine disruptor chemicals). Furthermore, new adsorption trends and trials related to CD-based materials are also discussed regarding their regenerative potential. Finally, this review could be an inspiration for new research and could also anticipate future directions and challenges associated with CD-based adsorbents.

3.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947291

RESUMO

ß-Cyclodextrin nanosponge (ß-CD-M) was used for the adsorption of ibuprofen (IBU) from water and sewage. The obtained material was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), Harkins and Jura t-Plot, zeta potential, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elementary analysis (EA). Batch adsorption experiments were employed to investigate the effects of the adsorbent dose, initial IBU concentration, contact time, electrolyte ions and humic acids, and sewage over adsorption efficiency. The experimental isotherms were show off using Langmuir, Freundlich, Hill, Halsey and Sips isotherm models and thermodynamic analysis. The fits of the results were estimated according to the Sips isotherm, with a maximum adsorption capacity of 86.21 mg g-1. The experimental kinetics were studied by pseudo-first-order, pseudo-second-order, Elovich, modified Freundlich, Weber Morris, Bangham's pore diffusion, and liquid film diffusion models. The performed experiments revealed that the adsorption process fits perfectly to the pseudo-second-order model. The Elovich and Freundlich models indicate chemisorption, and the kinetic adsorption model itself is complex. The data obtained throughout the study prove that this nanosponge (NS) is extremely stable, self-separating, and adjusting to the guest structure. It also represents a potential biodegradable adsorbent for the removal IBU from wastewaters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...