Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbon Balance Manag ; 18(1): 11, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422567

RESUMO

During a time of rapid urban growth and development, it is becoming ever more important to monitor the carbon fluxes of our cities. Unlike Canada's commercially managed forests that have a long history of inventory and modelling tools, there is both a lack of coordinated data and considerable uncertainty on assessment procedures for urban forest carbon. Nonetheless, independent studies have been carried out across Canada. To improve upon Canada's federal government reporting on carbon storage and sequestration by urban forests, this study builds on existing data to develop an updated assessment of carbon storage and sequestration for Canada's urban forests. Using canopy cover estimates derived from ortho-imagery and satellite imagery ranging from 2008 to 2012 and field-based urban forest inventory and assessment data from 16 Canadian cities and one US city, this study found that Canadian urban forests store approximately 27,297.8 kt C (- 37%, + 45%) in above and belowground biomass and sequester approximately 1497.7 kt C year-1 (- 26%, + 28%). In comparison with the previous national assessment of urban forest carbon, this study suggested that in urban areas carbon storage has been overestimated and carbon sequestration has been underestimated. Maximizing urban forest carbon sinks will contribute to Canada's mitigation efforts and, while being a smaller carbon sink compared to commercial forests, will also provide important ecosystem services and co-benefits to approximately 83% of Canadian people.

2.
Ecol Appl ; 32(4): e2562, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35138007

RESUMO

Given the large and increasing amount of urban, suburban, and exurban land use on Earth, there is a need to accurately assess net primary productivity (NPP) of urban ecosystems. However, the heterogeneous and dynamic urban mosaic presents challenges to the measurement of NPP, creating landscapes that may appear more similar to a savanna than to the native landscape replaced. Studies of urban biomass have tended to focus on one type of vegetation (e.g., lawns or trees). Yet a focus on the ecology of the city should include the entire urban ecosystem rather than the separate investigation of its parts. Furthermore, few studies have attempted to measure urban aboveground NPP (ANPP) using field-based methods. Most studies project growth rates from measurements of tree diameter to estimate annual ANPP or use remote sensing approaches. In addition, field-based methods for measuring NPP do not address any special considerations for adapting such field methods to urban landscapes. Frequent planting and partial or complete removal of herbaceous and woody plants can make it difficult to accurately quantify increments and losses of plant biomass throughout an urban landscape. In this study, we review how ANPP of urban landscapes can be estimated based on field measurements, highlighting the challenges specific to urban areas. We then estimated ANPP of woody and herbaceous vegetation over a 15-year period for Baltimore, MD, USA using a combination of plot-based field data and published values from the literature. Baltimore's citywide ANPP was estimated to be 355.8 g m-2 , a result that we then put into context through comparison with other North American Long-Term Ecological Research (LTER) sites and mean annual precipitation. We found our estimate of Baltimore citywide ANPP to be only approximately half as much (or less) than ANPP at forested LTER sites of the eastern United States, and more comparable to grassland, oldfield, desert, or boreal forest ANPP. We also found that Baltimore had low productivity for its level of precipitation. We conclude with a discussion of the significance of accurate assessment of primary productivity of urban ecosystems and critical future research needs.


Assuntos
Ecossistema , Chuva , Baltimore , Biomassa , Pradaria , Árvores
3.
J Environ Manage ; 301: 113751, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628283

RESUMO

Heat-related mortality is one of the leading causes of weather-related deaths in the United States. With changing climates and an aging population, effective adaptive strategies to address public health and environmental justice issues associated with extreme heat will be increasingly important. One effective adaptive strategy for reducing heat-related mortality is increasing tree cover. Designing such a strategy requires decision-support tools that provide spatial and temporal information about impacts. We apply such a tool to estimate spatially and temporally explicit reductions in temperature and mortality associated with a 10% increase in tree cover in 10 U.S. cities with varying climatic, demographic, and land cover conditions. Two heat metrics were applied to represent tree impacts on moderately and extremely hot days (relative to historical conditions). Increasing tree cover by 10% reduced estimated heat-related mortality in cities significantly, with total impacts generally greatest in the most populated cities. Mortality reductions vary widely across cities, ranging from approximately 50 fewer deaths in Salt Lake City to about 3800 fewer deaths in New York City. This variation is due to differences in demographics, land cover, and local climatic conditions. In terms of per capita estimated impacts, hotter and drier cities experience higher percentage reductions in mortality due to increased tree cover across the season. Phoenix potentially benefits the most from increased tree cover, with an estimated 22% reduction in mortality from baseline levels. In cooler cities such as Minneapolis, trees can reduce mortality significantly on days that are extremely hot relative to historical conditions and therefore help mitigate impacts during heat wave conditions. Recent studies project highest increases in heat-related mortality in the cooler cities, so our findings have important implications for adaptation planning. Our estimated spatial and temporal distributions of mortality reductions for each city provide crucial information needed for promoting environmental justice and equity. More broadly, the methods and model can be applied by both urban planners and the public health community for designing targeted, effective policies to reduce heat-related mortality. Additionally, land use managers can use this information to optimize tree plantings. Public stakeholders can also use these impact estimates for advocacy.


Assuntos
Temperatura Alta , Árvores , Cidades , Mortalidade , Saúde Pública , Estações do Ano , Estados Unidos
4.
Environ Sci Technol ; 55(10): 6613-6622, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33908766

RESUMO

Trees and urban forests remove particulate matter (PM) from the air through the deposition of particles on the leaf surface, thus helping to improve air quality and reduce respiratory problems in urban areas. Leaf deposited PM, in turn, is either resuspended back into the atmosphere, washed off during rain events or transported to the ground with litterfall. The net amount of PM removed depends on crown and leaf characteristics, air pollution concentration, and weather conditions, such as wind speed and precipitation. Many existing deposition models, such as i-Tree Eco, calculate PM2.5 removal using a uniform deposition velocity function and resuspension rate for all tree species, which vary based on leaf area and wind speed. However, model results are seldom validated with experimental data. In this study, we compared i-Tree Eco calculations of PM2.5 deposition with fluxes determined by eddy covariance assessments (canopy scale) and particulate matter accumulated on leaves derived from measurements of vacuum/filtration technique as well as scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (leaf scale). These investigations were carried out at the Capodimonte Royal Forest in Naples. Modeled and measured fluxes showed good overall agreement, demonstrating that net deposition mostly happened in the first part of the day when atmospheric PM concentration is higher, followed by high resuspension rates in the second part of the day, corresponding with increased wind speeds. The sensitivity analysis of the model parameters showed that a better representation of PM deposition fluxes could be achieved with adjusted deposition velocities. It is also likely that the standard assumption of a complete removal of particulate matter, after precipitation events that exceed the water storage capacity of the canopy (Ps), should be reconsidered to better account for specific leaf traits. These results represent the first validation of i-Tree Eco PM removal with experimental data and are a starting point for improving the model parametrization and the estimate of particulate matter removed by urban trees.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Quercus , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Florestas , Material Particulado/análise , Folhas de Planta/química , Árvores
5.
Ambio ; 50(5): 1035-1046, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33244744

RESUMO

The distribution of urban ecosystem services (UES) is often uneven across socioeconomic groups, leading to environmental justice issues. Understanding the distribution of UES across a landscape can help managers ensure an equitable distribution of services. While many past studies have focused on the distribution of green spaces in relation to socioeconomic variables, this research analyzes the distribution of UES provided by these green spaces. This research quantified air pollution removal, atmospheric carbon reduction, and surface runoff mitigation provided by urban trees in Strasbourg city (France). The provision of these three UES was studied at the census block scale by creating an index of UES delivery, which was contrasted with a constructed social deprivation index. Our results show that there is no significant association between the delivery of UES and social deprivation. Some deprived populations benefit from high UES delivery. Results also suggest that mapping associations between UES delivery and social deprivation should be integrated with future development plans to enhance the equitable distribution of UES. This study provides insights into the French context where studies about the distribution of UES at a small-area level remain lacking.


Assuntos
Poluição do Ar , Ecossistema , Cidades , França , Árvores
6.
Int J Biometeorol ; 65(2): 277-289, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33070207

RESUMO

Extremely high temperatures, which negatively affect the human health and plant performances, are becoming more frequent in cities. Urban green infrastructure, particularly trees, can mitigate this issue through cooling due to transpiration, and shading. Temperature regulation by trees depends on feedbacks among the climate, water supply, and plant physiology. However, in contrast to forest or general ecosystem models, most current urban tree models still lack basic processes, such as the consideration of soil water limitation, or have not been evaluated sufficiently. In this study, we present a new model that couples the soil water balance with energy calculations to assess the physiological responses and microclimate effects of a common urban street-tree species (Tilia cordata Mill.) on temperature regulation. We contrast two urban sites in Munich, Germany, with different degree of surface sealing at which microclimate and transpiration had been measured. Simulations indicate that differences in wind speed and soil water supply can be made responsible for the differences in transpiration. Nevertheless, the calculation of the overall energy balance showed that the shading effect, which depends on the leaf area index and canopy cover, contributes the most to the temperature reduction at midday. Finally, we demonstrate that the consideration of soil water availability for stomatal conductance has realistic impacts on the calculation of gaseous pollutant uptake (e.g., ozone). In conclusion, the presented model has demonstrated its ability to quantify two major ecosystem services (temperature mitigation and air pollution removal) consistently in dependence on meteorological and site conditions.


Assuntos
Ecossistema , Microclima , Cidades , Florestas , Alemanha , Humanos , Transpiração Vegetal , Água
7.
Ecosyst Serv ; 432020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33365228

RESUMO

Ecosystem accounts, as formalized by the System of Environmental-Economic Accounting Experimental Ecosystem Accounts (SEEA EEA), have been compiled in a number of countries, yet there have been few attempts to develop them for the U.S. We explore the potential for U.S. ecosystem accounting by compiling ecosystem extent, condition, and ecosystem services supply and use accounts for a ten-state region in the Southeast. The pilot accounts address air quality, water quality, biodiversity, carbon storage, recreation, and pollination for selected years from 2001 to 2015. Results illustrate how information from ecosystem accounts can contribute to policy and decision-making. Using an example from Atlanta, we also show how ecosystem accounts can be considered alongside other SEEA accounts to give a more complete picture of a local area's environmental-economic trends. The process by which we determined where to place metrics within the accounting framework, which was strongly informed by the National Ecosystem Services Classification System (NESCS), can provide guidance for future ecosystem accounts in the U.S. and other countries. Finally, we identify knowledge gaps that limit the inclusion of certain ecosystem services in the accounts and suggest future research that can close these gaps and improve future U.S. ecosystem accounts.

8.
Sante Publique ; S1(HS): 153-161, 2019 May 13.
Artigo em Francês | MEDLINE | ID: mdl-31210476

RESUMO

The problems associated with air pollution and higher air temperatures in cities have been known for over a century, but so have the impacts of trees and forests on improving air quality and regulating air temperatures. Science has advanced our understanding on the various ways that trees affect air quality and temperatures. Trees affect air quality and consequently human health in both positive and negative ways by regulating air temperatures, altering the local microclimates, altering building energy use, removing air pollutants and emitting various chemicals. While the overall effect of trees and forests is an improvement in air quality, local scale forest designs near pollutant sources need to be considered as trees alter wind flow and can affect pollutant dispersion and local concentrations. Forests can limit pollution dispersion and increase local pollutant concentrations (e.g., along streets), but can also protect sites from pollutant emissions and have substantial impacts on lowering local pollution concentrations (e.g., in forest stands). By understanding how trees affect air quality and air temperatures, better landscape designs can be implemented to use trees and forests to improve human health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Florestas , Saúde Pública , Árvores , Meio Ambiente , Humanos
9.
Environ Manage ; 59(3): 373-392, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27778063

RESUMO

The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura Florestal/métodos , Florestas , Árvores/crescimento & desenvolvimento , Urbanização , Biomassa , Canadá , Carbono/análise , Previsões , Espécies Introduzidas , Folhas de Planta , Árvores/química
10.
Environ Pollut ; 215: 48-57, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27176764

RESUMO

Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and urban areas in every county in the conterminous United States. The results populated a national database of annual air pollutant removal, concentration changes, and reductions in adverse health incidences and costs for NO2, O3, PM2.5 and SO2. The developed database enabled a first order approximation of air quality and associated human health benefits provided by trees with any forest configurations anywhere in the conterminous United States over time. Comprehensive national database of tree effects on air quality and human health in the United States was developed.


Assuntos
Poluentes Atmosféricos/metabolismo , Ar/análise , Árvores/metabolismo , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Humanos , Estados Unidos
11.
J Environ Manage ; 163: 134-45, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26311086

RESUMO

Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape ecosystem conditions into logical and relatively homogeneous management units, making the potential for ecosystem-based decision support available to urban planners. The purpose of this study is to develop and propose a framework for urban forest ecosystem classification (UFEC). The multifactor framework integrates 12 ecosystem components that characterize the biophysical landscape, built environment, and human population. This framework is then applied at the neighbourhood scale in Toronto, Canada, using hierarchical cluster analysis. The analysis used 27 spatially-explicit variables to quantify the ecosystem components in Toronto. Twelve ecosystem classes were identified in this UFEC application. Across the ecosystem classes, tree canopy cover was positively related to economic wealth, especially income. However, education levels and homeownership were occasionally inconsistent with the expected positive relationship with canopy cover. Open green space and stocking had variable relationships with economic wealth and were more closely related to population density, building intensity, and land use. The UFEC can provide ecosystem-based information for greening initiatives, tree planting, and the maintenance of the existing canopy. Moreover, its use has the potential to inform the prioritization of limited municipal resources according to ecological conditions and to concerns of social equity in the access to nature and distribution of ecosystem service supply.


Assuntos
Cidades , Ecologia/métodos , Ecossistema , Florestas , Canadá , Análise por Conglomerados , Técnicas de Apoio para a Decisão , Ecologia/classificação , Humanos , Densidade Demográfica , Características de Residência , Árvores
12.
Environ Pollut ; 193: 119-129, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25016465

RESUMO

Trees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. However, the magnitude and value of the effects of trees and forests on air quality and human health across the United States remains unknown. Computer simulations with local environmental data reveal that trees and forests in the conterminous United States removed 17.4 million tonnes (t) of air pollution in 2010 (range: 9.0-23.2 million t), with human health effects valued at 6.8 billion U.S. dollars (range: $1.5-13.0 billion). This pollution removal equated to an average air quality improvement of less than one percent. Most of the pollution removal occurred in rural areas, while most of the health impacts and values were within urban areas. Health impacts included the avoidance of more than 850 incidences of human mortality and 670,000 incidences of acute respiratory symptoms.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Material Particulado/isolamento & purificação , Árvores/metabolismo , Poluentes Atmosféricos/metabolismo , Poluição do Ar/análise , Meio Ambiente , Humanos , Material Particulado/metabolismo , Saúde Pública , Estados Unidos
13.
Ambio ; 43(4): 466-79, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24740618

RESUMO

Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.


Assuntos
Poluição do Ar/prevenção & controle , Cidades , Mudança Climática , Fenômenos Ecológicos e Ambientais , Ecossistema , Agricultura Florestal , Espanha , Árvores/fisiologia
15.
Environ Pollut ; 178: 395-402, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23624337

RESUMO

Urban particulate air pollution is a serious health issue. Trees within cities can remove fine particles from the atmosphere and consequently improve air quality and human health. Tree effects on PM2.5 concentrations and human health are modeled for 10 U.S. cities. The total amount of PM2.5 removed annually by trees varied from 4.7 tonnes in Syracuse to 64.5 tonnes in Atlanta, with annual values varying from $1.1 million in Syracuse to $60.1 million in New York City. Most of these values were from the effects of reducing human mortality. Mortality reductions were typically around 1 person yr(-1) per city, but were as high as 7.6 people yr(-1) in New York City. Average annual percent air quality improvement ranged between 0.05% in San Francisco and 0.24% in Atlanta. Understanding the impact of urban trees on air quality can lead to improved urban forest management strategies to sustain human health in cities.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Modelos Químicos , Material Particulado/análise , Árvores/química , Poluentes Atmosféricos/metabolismo , Poluição do Ar/estatística & dados numéricos , Cidades , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/metabolismo , Árvores/fisiologia , Estados Unidos
16.
Environ Pollut ; 178: 229-36, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23583943

RESUMO

Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m(-2) of tree cover and sequestration densities average 0.28 kg C m(-2) of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes).


Assuntos
Poluentes Atmosféricos/análise , Sequestro de Carbono , Carbono/análise , Cidades/estatística & dados numéricos , Árvores/fisiologia , Poluição do Ar/estatística & dados numéricos , Mudança Climática , Conservação dos Recursos Naturais , Monitoramento Ambiental , Efeito Estufa , Estados Unidos
17.
Environ Pollut ; 176: 123-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23419770

RESUMO

A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature and LAI fields, and CMAQ provided NO2 concentrations. A base case simulation was conducted using built-in distributed i-Tree Eco tools, and simulations using different inputs were compared against this base case. Differences in land cover classification and tree cover between the distributed i-Tree Eco and WRF resulted in changes in estimated LAI, which in turn resulted in variations in simulated NO2 dry deposition. Estimated NO2 removal decreased when CMAQ-derived concentration was applied to the distributed i-Tree Eco simulation. Discrepancies in temperature inputs did little to affect estimates of NO2 removal by dry deposition to trees in Baltimore.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Modelos Químicos , Árvores/química , Baltimore , Cidades
18.
Environ Pollut ; 171: 9-17, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22858662

RESUMO

A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Modelos Químicos , Monóxido de Carbono/análise , Sistemas de Informação Geográfica , Dióxido de Nitrogênio/análise , Material Particulado/análise , Dióxido de Enxofre/análise
19.
Environ Pollut ; 159(5): 1040-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21168939

RESUMO

Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon benefits. Those trees will likely remove more than 10,000 tons of air pollutants and a maximum of 1500 tons of carbon over the next 100 years given a 4% annual mortality rate. Cumulative carbon storage will be reduced through time as carbon loss through tree mortality outweighs carbon accumulation through tree growth. Model projections are strongly affected by mortality rate whose uncertainties limit estimations accuracy. Increasing mortality rate from 4 to 8% per year produce a significant decrease in the total pollution removal over a 100 year period from 11 000 tons to 3000 tons.


Assuntos
Poluição do Ar/prevenção & controle , Árvores , Algoritmos , Sequestro de Carbono , Agricultura Florestal , Humanos , Cidade de Nova Iorque , Densidade Demográfica , População Urbana
20.
Environ Manage ; 46(3): 378-90, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20676888

RESUMO

The 2001 National Land Cover Database (NLCD) provides 30-m resolution estimates of percentage tree canopy and percentage impervious cover for the conterminous United States. Previous estimates that compared NLCD tree canopy and impervious cover estimates with photo-interpreted cover estimates within selected counties and places revealed that NLCD underestimates tree and impervious cover. Based on these previous results, a wall-to-wall comprehensive national analysis was conducted to determine if and how NLCD derived estimates of tree and impervious cover varies from photo-interpreted values across the conterminous United States. Results of this analysis reveal that NLCD significantly underestimates tree cover in 64 of the 65 zones used to create the NCLD cover maps, with a national average underestimation of 9.7% (standard error (SE) = 1.0%) and a maximum underestimation of 28.4% in mapping zone 3. Impervious cover was also underestimated in 44 zones with an average underestimation of 1.4% (SE = 0.4%) and a maximum underestimation of 5.7% in mapping zone 56. Understanding the degree of underestimation by mapping zone can lead to better estimates of tree and impervious cover and a better understanding of the potential limitations associated with NLCD cover estimates.


Assuntos
Bases de Dados Factuais , Ecossistema , Árvores , Atividades Humanas , Astronave , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...