Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 71, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745155

RESUMO

BACKGROUND: Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS: The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS: We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS: This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.


Assuntos
Autofagia , Neoplasias da Mama , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Humanos , Autofagia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Linhagem Celular Tumoral , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473753

RESUMO

Regardless of the unprecedented progress in malignant melanoma treatment strategies and clinical outcomes of patients during the last twelve years, this skin cancer remains the most lethal one. We have previously documented that vitamin D and its low-calcaemic analogues enhance the anticancer activity of drugs including a classic chemotherapeutic-dacarbazine-and an antiangiogenic VEGFRs inhibitor-cediranib. In this study, we explored the response of A375 and RPMI7951 melanoma lines to CPL304110 (CPL110), a novel selective inhibitor of fibroblast growth factor receptors (FGFRs), and compared its efficacy with that of AZD4547, the first-generation FGFRs selective inhibitor. We also tested whether 1,25(OH)2D3, the active form of vitamin D, modulates the response of the cells to these drugs. CPL304110 efficiently decreased the viability of melanoma cells in both A375 and RPMI7951 cell lines, with the IC50 value below 1 µM. However, the metastatic RPMI7951 melanoma cells were less sensitive to the tested drug than A375 cells, isolated from primary tumour site. Both tested FGFR inhibitors triggered G0/G1 cell cycle arrest in A375 melanoma cells and increased apoptotic/necrotic SubG1 fraction in RPMI7951 melanoma cells. 1,25(OH)2D3 modulated the efficacy of CPL304110, by decreasing the IC50 value by more than 4-fold in A375 cell line, but not in RPMI7951 cells. Further analysis revealed that both inhibitors impact vitamin D signalling to some extent, and this effect is cell line-specific. On the other hand, 1,25(OH)2D3, have an impact on the expression of FGFR receptors and phosphorylation (FGFR-Tyr653/654). Interestingly, 1,25(OH)2D3 and CPL304110 co-treatment resulted in activation of the ERK1/2 pathway in A375 cells. Our results strongly suggested possible crosstalk between vitamin D-activated pathways and activity of FGFR inhibitors, which should be considered in further clinical studies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Vitamina D/metabolismo , Receptores de Calcitriol/metabolismo , Linhagem Celular Tumoral , Neoplasias Cutâneas/patologia , Vitaminas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos , Proliferação de Células
3.
Free Radic Biol Med ; 210: 286-303, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040270

RESUMO

Deregulation of mitochondria activity is one of the hallmarks of cancerogenesis and an important target for cancer therapy. Therefore, we compared the impact of an active form of vitamin D3 (1,25(OH)2D3) on mitochondrial morphology and bioenergetics in human squamous cell carcinoma (A431) and immortalized HaCaT keratinocytes. It was shown that mitochondria of cancerous A431 cells differ from that observed in HaCaT keratinocytes in terms of network, morphology, bioenergetics, glycolysis, and mitochondrial DNA copy number, while treatment of A431 with 1,25(OH)2D3 partially eliminates these differences. Furthermore, mitochondrial membrane potential, basal respiration, and mitochondrial reactive oxygen species production were decreased in A431 cells treated with 1,25(OH)2D3. Additionally, the expression and protein level of mitophagy marker PINK1 was significantly increased in A431 1,25(OH)2D3 treated cells, but not observed in treated HaCaT cells. Knockout of VDR (vitamin D receptor) or RXRA (binding partner retinoid X receptor) partially altered mitochondrial morphology and function as well as mitochondrial response to 1,25(OH)2D3. Transcriptomic analysis on A431 cells treated with 1,25(OH)2D3 revealed modulation of expression of several mitochondrial-related genes involved in mitochondrial depolarization, mitochondrial protein translation (i.e. LYRM9, MARS2), and fusion-fission (OPA1, FIS1, MFN1 and 2), however, none of the genes coded by mitochondrial DNA was affected. Interestingly, in silico analyses of nuclear-encoded mitochondrial genes revealed that they are rather activated by the secondary genomic response to 1,25(OH)2D3. Taken together, 1,25(OH)2D3 remodels mitochondrial architecture and bioenergetics through VDR-dependent and only partially RXRA-dependent activation of the genomic pathway, thus outlining a new perspective for anticancer properties of vitamin D3 in relation to mitochondria in squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Vitamina D , Humanos , Vitamina D/farmacologia , Vitamina D/metabolismo , Calcitriol/farmacologia , Calcitriol/metabolismo , Queratinócitos/metabolismo , Vitaminas/farmacologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Genômica , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
4.
Mol Cell Endocrinol ; 582: 112124, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123121

RESUMO

BACKGROUND: Human skin is the natural source, place of metabolism, and target for vitamin D3. The classical active form of vitamin D3, 1,25(OH)2D3, expresses pluripotent properties and is intensively studied in cancer prevention and therapy. To define the specific role of vitamin D3 receptor (VDR) and its co-receptor retinoid X receptor alpha (RXRA) in genomic regulation, VDR or RXRA genes were silenced in the squamous cell carcinoma cell line A431 and treated with 1,25(OH)2D3 at long incubation time points 24 h/72 h. Extending the incubation time of A431 WT (wild-type) cells with 1,25(OH)2D3 resulted in a two-fold increase in DEGs (differentially expressed genes) and a change in the amount of downregulated from 37% to 53%. VDR knockout led to a complete loss of 1,25(OH)2D3-induced genome-wide gene regulation at 24 h time point, but after 72 h, 20 DEGs were found, of which 75% were downregulated, and most of them belonged to the gene ontology group "immune response". This may indicate the existence of an alternative, secondary response to 1,25(OH)2D3. In contrast, treatment of A431 ΔRXRA cells with 1,25(OH)2D3 for 24 h only partially affected DEGs, suggesting RXRA-independent regulation. Interestingly, overexpression of classic 1,25(OH)2D3 targets, like CYP24A1 (family 24 of subfamily A of cytochrome P450 member 1) or CAMP (cathelicidin antimicrobial peptide) was found to be RXRA-independent. Also, immunofluorescence staining of A431 WT cells revealed partial VDR/RXRA colocalization after 24 h and 72 h 1,25(OH)2D3 treatment. Comparison of transcriptome changes induced by 1,25(OH)2D3 in normal keratinocytes vs. cancer cells showed high cell type specific expression pattern with only a few genes commonly regulated by 1,25(OH)2D3. Activation of the genomic pathway at least partially reversed the expression of cancer-related genes, forming a basis for anti-cancer activates of 1,25(OH)2D3. In summary, VDR or RXRA independent genomic activities of 1,25(OH)2D3 suggest the involvement of alternative factors, opening new challenges in this field.


Assuntos
Calcitriol , Carcinoma de Células Escamosas , Humanos , Calcitriol/farmacologia , Calcitriol/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Genômica , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Vitamina D3 24-Hidroxilase
5.
Nutrients ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960182

RESUMO

PDIA3 is an endoplasmic reticulum disulfide isomerase, which is involved in the folding and trafficking of newly synthesized proteins. PDIA3 was also described as an alternative receptor for the active form of vitamin D (1,25(OH)2D3). Here, we investigated an impact of PDIA3 in mitochondrial morphology and bioenergetics in squamous cell carcinoma line A431 treated with 1,25(OH)2D3. It was observed that PDIA3 deletion resulted in changes in the morphology of mitochondria including a decrease in the percentage of mitochondrial section area, maximal diameter, and perimeter. The 1,25(OH)2D3 treatment of A431∆PDIA3 cells partially reversed the effect of PDIA3 deletion increasing aforementioned parameters; meanwhile, in A431WT cells, only an increase in mitochondrial section area was observed. Moreover, PDIA3 knockout affected mitochondrial bioenergetics and modulated STAT3 signaling. Oxygen consumption rate (OCR) was significantly increased, with no visible effect of 1,25(OH)2D3 treatment in A431∆PDIA3 cells. In the case of Extracellular Acidification Rate (ECAR), an increase was observed for glycolysis and glycolytic capacity parameters in the case of non-treated A431WT cells versus A431∆PDIA3 cells. The 1,25(OH)2D3 treatment had no significant effect on glycolytic parameters. Taken together, the presented results suggest that PDIA3 is strongly involved in the regulation of mitochondrial bioenergetics in cancerous cells and modulation of its response to 1,25(OH)2D3, possibly through STAT3.


Assuntos
Isomerases de Dissulfetos de Proteínas , Vitamina D , Vitamina D/farmacologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas/metabolismo , Vitaminas , Respiração Celular , Glicólise
6.
Materials (Basel) ; 16(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005131

RESUMO

The increasing demand for orthodontic treatments due to the high prevalence of malocclusion has inspired clinicians and material scientists to investigate innovative, more effective, and precise bonding methods with reduced chairside time. This study aimed at comparing the shear bond strength (SBS) of metal and ceramic brackets bonded to enamel using the indirect bonding technique (IDB). Victory Series metal brackets (Metal-OPC, Metal-APC) and Clarity™ Advanced ceramic brackets (Ceramic-OPC) (3M Unitek, Monrovia, CA, USA) were bonded indirectly to extracted human premolars through the etch-and-rinse technique. A qualitative assessment of the enamel surface using microscopic methods was performed, and the amount of residual adhesive was reported as per the adhesive remnant index (ARI). Moreover, the bracket surface was evaluated with SEM-EDS. The highest SBS mean values were observed in the Ceramic-OPC group (16.33 ± 2.01 MPa), while the lowest ones were obtained with the Metal-OPC group (11.51 ± 1.40 MPa). The differences between the Metal-AOPC vs. Metal-APC groups (p = 0.0002) and the Metal-OPC vs. Ceramic-OPC groups (p = 0.0000) were statistically significant. Although the Ceramic-OPC brackets bonded indirectly to the enamel surface achieved the highest SBS, the enamel damage was significantly higher compared to that of the other groups. Thus, considering the relatively high bond SBS and favourable debonding pattern, Metal-APC brackets bonded indirectly may represent the best choice.

7.
Materials (Basel) ; 16(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37895679

RESUMO

Successful orthodontic therapy, apart from a proper treatment plan, depends on optimal bracket-enamel adhesion. Among numerous factors affecting adhesion, the type of bracket and preparation of the tooth's surface are crucial. The aim of this study was to compare the shear bond strength (SBS) of metal and ceramic brackets to the enamel's surface using direct bonding. Forty extracted human premolars were divided into four groups according to the etching method (etch-and-rinse and self-etch) and bracket type. The SBS and adhesive remnant index (ARI) were determined. The ceramic brackets achieved the highest SBS values both in the self-etch (SE) and etch-and-rinse (ER) protocols. Higher SBS values for ceramic and metallic brackets were found in the ER protocol. In all tested groups, the achieved SBS value was satisfactory to withstand orthodontic and occlusal forces. There was no significant difference in the ARI score between study groups (p = 0.71). The fracture occurred between the bracket base and adhesive material in both types of brackets, which decreased the risk of enamel damage during debonding.

8.
Steroids ; 199: 109288, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549780

RESUMO

An active form of vitamin D3 (1,25-dihydroxyvitamin D3) acts through vitamin D receptor (VDR) initiating genomic response, but several studies described also non-genomic actions of 1,25-dihydroxyvitamin D3, implying the role of PDIA3 in the process. PDIA3 is a membrane-associated disulfide isomerase involved in disulfide bond formation, protein folding, and remodeling. Here, we used a transcriptome-based approach to identify changes in expression profiles in PDIA3-deficient squamous cell carcinoma line A431 after 1,25-dihydroxyvitamin D3 treatment. PDIA3 knockout led to changes in the expression of more than 2000 genes and modulated proliferation, cell cycle, and mobility of cells; suggesting an important regulatory role of PDIA3. PDIA3-deficient cells showed increased sensitivity to 1,25-dihydroxyvitamin D3, which led to decrease migration. 1,25-dihydroxyvitamin D3 treatment altered also genes expression profile of A431ΔPDIA3 in comparison to A431WT cells, indicating the existence of PDIA3-dependent genes. Interestingly, classic targets of VDR, including CAMP (Cathelicidin Antimicrobial Peptide), TRPV6 (Transient Receptor Potential Cation Channel Subfamily V Member 6), were regulated differently by 1,25-dihydroxyvitamin D3, in A431ΔPDIA3. Deletion of PDIA3 impaired 1,25-dihydroxyvitamin D3-response of genes, such as PTGS2, MMP12, and FOCAD, which were identified as PDIA3-dependent. Additionally, response to 1,25-dihydroxyvitamin D3 in cancerous A431 cells differed from immortalized HaCaT keratinocytes, used as non-cancerous control. Finally, silencing of PDIA3 and 1,25-dihydroxyvitamin D3, at least partially reverse the expression of cancer-related genes in A431 cells, thus targeting PDIA3 and use of 1,25-dihydroxyvitamin D3 could be considered in a prevention and therapy of the skin cancer. Taken together, PDIA3 has a strong impact on gene expression and physiology, including genomic response to 1,25-dihydroxyvitamin D3.


Assuntos
Carcinoma de Células Escamosas , Isomerases de Dissulfetos de Proteínas , Vitamina D , Humanos , Carcinoma de Células Escamosas/genética , Genômica , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Receptores de Calcitriol/genética , Vitamina D/metabolismo , Canais de Cátion TRPV/metabolismo
9.
Pharmaceutics ; 15(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37111543

RESUMO

In recent years, there has been a significant surge in reports on the health-promoting benefits of winter cherry (Withania somnifera), also known as Ashwagandha. Its current research covers many aspects of human health, including neuroprotective, sedative and adaptogenic effects and effects on sleep. There are also reports of anti-inflammatory, antimicrobial, cardioprotective and anti-diabetic properties. Furthermore, there are reports of reproductive outcomes and tarcicidal hormone action. This growing body of research on Ashwagandha highlights its potential as a valuable natural remedy for many health concerns. This narrative review delves into the most recent findings and provides a comprehensive overview of the current understanding of ashwagandha's potential uses and any known safety concerns and contraindications.

10.
Cells ; 13(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201216

RESUMO

The genomic activity of 1,25(OH)2D3 is mediated by vitamin D receptor (VDR), whilst non-genomic is associated with protein disulfide isomerase family A member 3 (PDIA3). Interestingly, our recent studies documented that PDIA3 is also involved, directly or indirectly, in the modulation of genomic response to 1,25(OH)2D3. Moreover, PDIA3 was also shown to regulate cellular bioenergetics, possibly through the modulation of STAT signaling. Here, the role of VDR and PDIA3 proteins in membrane response to 1,25(OH)2D3 and calcium signaling was investigated in squamous cell carcinoma A431 cell line with or without the deletion of VDR and PDIA3 genes. Calcium influx was assayed by Fura-2AM or Fluo-4AM, while calcium-regulated element (NFAT) activation was measured using a dual luciferase assay. Further, the levels of proteins involved in membrane response to 1,25(OH)2D3 in A431 cell lines were analyzed via Western blot analysis. The deletion of either PDIA3 or VDR resulted in the decreased baseline levels of Ca2+ and its responsiveness to 1,25(OH)2D3; however, the effect was more pronounced in A431∆PDIA3. Furthermore, the knockout of either of these genes disrupted 1,25(OH)2D3-elicited membrane signaling. The data presented here indicated that the VDR is essential for the activation of calcium/calmodulin-dependent protein kinase II alpha (CAMK2A), while PDIA3 is required for 1,25(OH)2D3-induced calcium mobilization in A431 cells. Taken together, those results suggest that both VDR and PDIA3 are essential for non-genomic response to this powerful secosteroid.


Assuntos
Carcinoma de Células Escamosas , Isomerases de Dissulfetos de Proteínas , Vitamina D/análogos & derivados , Humanos , Isomerases de Dissulfetos de Proteínas/genética , Receptores de Calcitriol , Sinalização do Cálcio , Cálcio
11.
Viruses ; 14(8)2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-36016322

RESUMO

SARS-CoV-2 variants pose a significant threat to global public health. However, their influence on disease severity, especially among young adults who may exhibit different clinical characteristics, is debatable. In this retrospective study of 229 young adults hospitalized with COVID-19, we investigated the differences between Poland's second and third waves of the pandemic. To identify potential predictors of severe COVID-19 in young adults, we analyzed patient characteristics and laboratory findings between survivors and non-survivors and we performed logistic regression to assess the risk of death, mechanical ventilation, and intensive care unit treatment. We found no increase in COVID-19 severity comparing the third and second waves of the pandemic, indicating that the alpha variant had no influence on disease severity. In addition, we found that factors, such as obesity, comorbidities, lung involvement, leukocytosis, neutrophilia, lymphopenia, higher IG count, the neutrophil-to-lymphocyte ratio, C-reactive protein, procalcitonin, interleukin-6, D-Dimer, lactate dehydrogenase, high-sensitive troponin I, creatine kinase-myocardial band, myoglobin, N-terminal-pro-B-type natriuretic peptide, creatinine, urea and gamma-glutamyl transferase, lower estimated glomerular filtration rate, albumin, calcium and vitamin D3, possibly a decrease in red blood cell counts, hemoglobin and hematocrit, and an increase in creatine kinase during hospitalization may be associated with poor outcomes of COVID-19.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Creatina Quinase , Hospitalização , Humanos , Polônia/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem
12.
Animals (Basel) ; 12(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892532

RESUMO

The effect of the g.4290 C>G substitution in the FADS2 gene and g.285 C>T in the FABP4 gene on carcass quality, meat quality, and fatty acid profile of the pectoralis superficialis muscle of 238 male broiler chickens reared up to 45 days of age was analyzed. A significant influence of g.4290 C>G in the FADS2 gene on the pectoralis superficialis muscle fatty acid profile was demonstrated. Chickens with the GG genotype were characterized by the highest content of conjugated linoleic acid, amino acids, eicosapentaenoic acids, docosapentaenoic acid, docosahexaenoic acids. and the lowest value of the linoleic acid/alpha-linolenic acid ratio. The FABP4 polymorphism determined only the content of C18:1n-9, C18:2n-6 and docosahexaenoic acid. There was no effect of the studied genotypes on final body weight, carcass quality traits, or quality of broiler pectoral muscles.

13.
Int J Numer Method Biomed Eng ; 38(1): e3537, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605618

RESUMO

A two-chamber inflation-deflation test was recently proposed as a diagnostic method to determine parameters of the intermittent pneumatic compression used as an effective therapeutic modality for lymphedematous limbs. It is crucial that the recorded trends for residual tissue deformations are understood in terms of specific properties of subcutaneous tissue and skin to support diagnostic process. This paper presents a mechanical model of lymphedematous legs in two-chamber tests. The cylindrical geometry composed of layers of skin, modeled as hyperelastic medium, and subcutaneous tissue, modeled as fluid saturated hyperporoelastic medium, is assumed. The results of finite element simulations show the possibility of such combinations of the properties of skin (rigidity) and subcutaneous tissue (rigidity and permeability), which ensures that the model predictions resemble the evolution of tissue residual deformations observed in the two-chamber test. The stiffness and permeability appeared to be the most crucial tissue property determining trend lines of residual deformations. The analysis of the components of displacement of solid matrix and pore fluid pressure explains the mechanisms that are responsible for particular tissue behavior. The moderate role of skin and limitations related to the mechanical and geometrical model assumptions are indicated. Recommendations for treating lymphedema using intermittent compression therapy in relation to the results of the two-chamber test and properties of tissues are discussed.


Assuntos
Perna (Membro) , Linfedema , Simulação por Computador , Análise de Elementos Finitos , Humanos , Linfedema/diagnóstico , Linfedema/terapia , Estresse Mecânico
14.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884710

RESUMO

Interleukin 33 (IL-33) belongs to the IL-1 family and is produced constitutively by epithelial and endothelial cells of various organs, such as the skin. It takes part in the maintenance of tissue homeostasis, repair, and immune response, including activation of Th2 lymphocytes. Its involvement in pathogenesis of several inflammatory diseases including psoriasis was also suggested, but this is not fully understood. The aim of the study was to investigate expression of IL-33 and its receptor, ST2, in psoriasis, and the effects of the active form of vitamin D (1,25(OH)2D3) on their expression in skin cells. Here we examined mRNA and protein profiles of IL-33 and ST2 in 18 psoriatic patients and healthy volunteers by qPCR and immunostaining techniques. Potential effects of 1,25(OH)2D3 and its receptor (VDR) on the expression of IL-33 and ST2 were tested in cultured keratinocytes, melanocytes, fibroblasts, and basal cell carcinoma cells. It was shown that 1,25(OH)2D3 effectively stimulated expression of IL-33 and its receptor ST2's mRNAs in a time-dependent manner, in keratinocytes and to the lesser extends in melanocytes, but not in fibroblasts. Furthermore, the effect of vitamin D on expression of IL-33 and ST2 was VDR-dependent. Finally, we demonstrated that the expression of mRNA for IL-33 was mainly elevated in the psoriatic skin but not in its margin. Interestingly, ST2 mRNA was downregulated in psoriatic lesion compared to both marginal tissue as well as healthy skin. Our data indicated that vitamin D can modulate IL-33 signaling, opening up new perspectives for our understanding of the mechanism of vitamin D action in psoriasis therapy.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Pele/efeitos dos fármacos , Vitamina D/farmacologia , Adolescente , Estudos de Casos e Controles , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Queratinócitos/metabolismo , Psoríase/metabolismo , Psoríase/patologia , Pele/metabolismo , Vitaminas/farmacologia
15.
Acta Bioeng Biomech ; 23(1): 149-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34846019

RESUMO

PURPOSE: In this paper, in vivo methods of estimation of the shear modulus and hydraulic permeability of subcutaneous tissue of lower limb are presented. METHODS: The experimental technique is based on single- or two-chamber inflation-deflation tests in which temporal changes in limb circumference under the test chamber for cyclic loading are registered. Simplified models for fast undrained deformation and slow creep of oedematous tissue with squeezing out interstitial liquid were considered. Finite element simulations of the chamber test within a finite deformation poroelastic model were elaborated. RESULTS: Formulas necessary to estimate the shear modulus and permeability of subcutaneous tissue were derived and then tested or calibrated using the results of poroelastic simulations. An example of application of the derived formulas for clinical data obtained from the chamber test was discussed. CONCLUSIONS: A simple in vivo methods of estimation of the hydromechanical properties of lymphedematous tissue (shear modulus and permeability) were proposed. The strengths and weaknesses of the proposed methodology were discussed.


Assuntos
Linfedema , Elasticidade , Líquido Extracelular , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Estresse Mecânico
16.
Anim Genet ; 52(6): 834-847, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34595762

RESUMO

The hypothalamus-pituitary axis is involved in digest processing, stress response, energy storage and many other processes. In birds, this control differs from in mammals, such as regulation of appetite and satiety centre. The transcriptomics analyses of both brain structures can explain and identify the molecular processes related to body growth and development and nutritional status. Many reports describe chicken transcriptome in literature, but gene expression studies in the other poultry species are extremely rare. Therefore, the present research undertook the attempt to explain hypothalamus-pituitary processes in domestic geese-Polish White Koluda®, main Polish line. After 16 weeks of fattening, significant differences in geese weight were observed. Therefore, transcriptome of pituitary and hypothalamus profiles could be compared between low and high growth rate geese groups. Due to the lack of domestic geese genome assembly in the public databases, we used three mapping approaches: de novo analysis, mapping to two other pink-footed and swan geese genomes. The functional examination showed that the most enriched biological process in the geese hypothalamus covered the immune response. Moreover, in the hypothalamus, proteins typical for the pituitary such as PRL and GH were differentially expressed (DE). Our study recommends one gene as a candidate for growth rate in geese-the FOS gene, which encodes Fos proto-oncogene-DE in both analysed tissues. The FOS gene is involved in regulating feeding behaviour, immune regulation, stimulating cellular proliferation and controlling growth hormone synthesis. Moreover, the present investigation indicates DE genes involved in gene expression regulation. The study delivers new information about the changes in the pituitary-hypothalamic axis in geese dependent on growth rate differences.


Assuntos
Gansos/genética , Regulação da Expressão Gênica , Sistema Hipotálamo-Hipofisário/metabolismo , Transcriptoma , Animais , Gansos/crescimento & desenvolvimento , Perfilação da Expressão Gênica/veterinária , Masculino
17.
Front Oncol ; 11: 763895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004285

RESUMO

Regardless of the recent groundbreaking introduction of personalized therapy, melanoma continues to be one of the most lethal skin malignancies. Still, a substantial proportion of patients either fail to respond to the therapy or will relapse over time, representing a challenging clinical problem. Recently, we have shown that vitamin D enhances the effectiveness of classical chemotherapeutics in the human malignant melanoma A375 cell line. In search for new combination strategies and adjuvant settings to improve melanoma patient outcomes in the current study, the effects of cediranib (AZD2171), an oral tyrosine kinase inhibitor of VEGFR1-3, PDGFR, and c-KIT, used in combination either with 1,25(OH)2D3 or with low-calcemic analog calcipotriol were tested on four human malignant melanoma cell lines (A375, MNT-1, RPMI-7951, and SK-MEL-28). Melanoma cells were pretreated with vitamin D and subsequently exposed to cediranib. We observed a marked decrease in melanoma cell proliferation (A375 and SK-MEL-28), G2/M cell cycle arrest, and a significant decrease in melanoma cell mobility in experimental conditions used (A375). Surprisingly, concurrently with a very desirable decrease in melanoma cell proliferation and mobility, we noticed the upregulation of VEGFR2 at both protein and mRNA levels. No effect of vitamin D was observed in MNT-1 and RPMI-7951 melanoma cells. It seems that vitamin D derivatives enhance cediranib efficacy by modulation of VEGFR2 expression in melanoma cells expressing VEGFR2. In conclusion, our experiments demonstrated that vitamin D derivatives hold promise as novel adjuvant candidates to conquer melanoma, especially in patients suffering from vitamin D deficiency. However, further extensive research is indispensable to reliably assess their potential benefits for melanoma patients.

18.
BMC Genomics ; 21(1): 509, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703165

RESUMO

BACKGROUND: Intensive selection for growth rate (GR) in broiler chickens carries negative after-effects, such as aberrations in skeletal development and the immune system, heart failure, and deterioration of meat quality. In Poland, fast-growing chicken populations are highly non-uniform in term of growth rate, which is highly unprofitable for poultry producers. Therefore, the identification of genetic markers for boiler GR that could support the selection process is needed. The hypothalamus is strongly associated with growth regulation by inducing important pituitary hormones. Therefore, the present study used this tissue to pinpoint genes involved in chicken growth control. RESULTS: The experiment included male broilers of Ross 308 strain in two developmental stages, after 3rd and 6th week of age, which were maintained in the same housing and feeding conditions. The obtained results show for the overexpression of genes related to orexigenic molecules, such as neuropeptide Y (NPY), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), galanin (GAL), and pro-melanin concentrating hormone (PMCH) in low GR cockerels. CONCLUSION: The results reveal strong associations between satiety centre and the growth process. The present study delivers new insights into hypothalamic regulation in broiler chickens and narrows the area for the searching of genetic markers for GR.


Assuntos
Galinhas , Hipotálamo , Animais , Galinhas/genética , Perfilação da Expressão Gênica , Masculino , Carne , Neuropeptídeo Y/genética
19.
J Mass Spectrom ; 55(3): e4486, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31813189

RESUMO

This study is aimed to observe changes in fatty acid profiles by time of flight secondary ion mass spectrometry (ToF-SIMS) in breast muscle tissues of broilers. Four different groups were identified. The source of fat in group I was soy oil (rich in linoleic acid, ω-6), group II received linseed oil (ω-3), and the third group was fed a mixture of the two mentioned oils. Broilers in the control group were fed with beef tallow, used in mass commercial production. The results reveal that the use of vegetable oils in animal nutrition determines the lipid profile of fatty acids. ToF-SIMS measurements showed that the lipid profile of muscle fibers and intramuscular fat reflect the composition of fats used as feed additives. In both structures, the ratio of ω-6/ω-3 fatty acids, which is most favorable for human health, was found in the groups in which a mixture of vegetable oils and a supplement of linseed oil were used.


Assuntos
Ácidos Graxos/análise , Carne/análise , Músculo Esquelético/química , Espectrometria de Massa de Íon Secundário/métodos , Ração Animal , Animais , Galinhas , Gorduras na Dieta , Óleos de Plantas
20.
Animals (Basel) ; 9(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159247

RESUMO

This study examined the relationships among physicochemical properties and ultrasonographic image attributes of pectoralis major muscles in broiler chickens. Forty male Ross 308 chicks were randomly assigned to four equinumerous fat-supplementation groups (Group SO: soybean oil; Group FO: flax oil; Group SO + FO: soybean oil + flax oil; and Group BF: beef fat). Ultrasonograms of birds' pectoral muscles were obtained just before slaughter at 6 weeks of age and were subjected to digital image analyses to determine the mean pixel intensity (MPI) and pixel heterogeneity values (standard deviation of numerical pixel values; MPH). A total of 2, 4, 2, and 6 significant correlations were recorded in Groups SO, FO, SO + FO, and BF, respectively; there were no correlations with the chemical composition of the muscles in Groups SO and SO + FO. The strongest correlations were found between muscle lightness (L*) and MPH in Group BF (physical characteristic; r = -0.82, p = 0.003), and between crude fat/protein content and MPI/MPH of pectoral the major muscles in Groups FO/BF (chemical characteristics; r = 0.72, p = 0.02). There exists a potential application of ultrasonographic imaging and computerized image analysis for predicting certain physicochemical properties of pectoralis major muscles in broiler chickens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...