Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(8): 4202-4215, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36068947

RESUMO

The pulvinar is a heterogeneous thalamic nucleus, which is well developed in primates. One of its subdivisions, the medial pulvinar, is connected to many cortical areas, including the visual, auditory, and somatosensory cortices, as well as with multisensory areas and premotor areas. However, except for the visual modality, little is known about its sensory functions. A hypothesis is that, as a region of convergence of information from different sensory modalities, the medial pulvinar plays a role in multisensory integration. To test this hypothesis, 2 macaque monkeys were trained to a fixation task and the responses of single-units to visual, auditory, and auditory-visual stimuli were examined. Analysis revealed auditory, visual, and multisensory neurons in the medial pulvinar. It also revealed multisensory integration in this structure, mainly suppressive (the audiovisual response is less than the strongest unisensory response) and subadditive (the audiovisual response is less than the sum of the auditory and the visual responses). These findings suggest that the medial pulvinar is involved in multisensory integration.


Assuntos
Pulvinar , Animais , Macaca , Haplorrinos , Neurônios/fisiologia , Sensação , Percepção Auditiva/fisiologia , Estimulação Acústica , Estimulação Luminosa , Percepção Visual/fisiologia
2.
Microsyst Nanoeng ; 8: 21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251687

RESUMO

Flexible intracerebral probes for neural recording and electrical stimulation have been the focus of many research works to achieve better compliance with the surrounding tissue while minimizing rejection. Strategies have been explored to find the best way to insert flexible probes into the brain while maintaining their flexibility once positioned. Here, we present a novel and versatile scalable batch fabrication approach to deliver ultrathin and flexible probes consisting of a silk-parylene bilayer. The biodegradable silk layer, whose degradation time is programmable, provides a temporary and programmable stiffener to allow the insertion of ultrathin parylene-based flexible devices. Our innovative and robust batch fabrication technology allows complete freedom over probe design in terms of materials, size, shape, and thickness. We demonstrate successful ex vivo insertion of the probe with acute high-fidelity recordings of epileptic seizures in field potentials as well as single-unit action potentials in mouse brain slices. Our novel technological solution for implanting ultraflexible devices in the brain while minimizing rejection risks shows high potential for use in both brain research and clinical therapies.

3.
J Neurochem ; 160(3): 305-324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34905223

RESUMO

Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1, and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Nucleotidases/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , 5'-Nucleotidase/antagonistas & inibidores , Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Animais , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo
4.
Front Bioeng Biotechnol ; 9: 780197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900968

RESUMO

In this study, we report a flexible implantable 4-channel microelectrode probe coated with highly porous and robust nanocomposite of poly (3,4-ethylenedioxythiophene) (PEDOT) and carbon nanofiber (CNF) as a solid doping template for high-performance in vivo neuronal recording and stimulation. A simple yet well-controlled deposition strategy was developed via in situ electrochemical polymerization technique to create a porous network of PEDOT and CNFs on a flexible 4-channel gold microelectrode probe. Different morphological and electrochemical characterizations showed that they exhibit remarkable and superior electrochemical properties, yielding microelectrodes combining high surface area, low impedance (16.8 ± 2 MΩ µm2 at 1 kHz) and elevated charge injection capabilities (7.6 ± 1.3 mC/cm2) that exceed those of pure and composite PEDOT layers. In addition, the PEDOT-CNF composite electrode exhibited extended biphasic charge cycle endurance and excellent performance under accelerated lifetime testing, resulting in a negligible physical delamination and/or degradation for long periods of electrical stimulation. In vitro testing on mouse brain slices showed that they can record spontaneous oscillatory field potentials as well as single-unit action potentials and allow to safely deliver electrical stimulation for evoking field potentials. The combined superior electrical properties, durability and 3D microstructure topology of the PEDOT-CNF composite electrodes demonstrate outstanding potential for developing future neural surface interfacing applications.

5.
J Neurosci Methods ; 341: 108759, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389603

RESUMO

BACKGROUND: Recordings with tetrodes have proven to be more effective in isolating single neuron spiking activity than with single microwires. However, tetrodes have never been used in humans. We report on the characteristics, safety, compatibility with clinical intracranial recordings in epileptic patients, and performance, of a new type of hybrid electrode equipped with tetrodes. NEW METHOD: 240 standard clinical macroelectrodes and 102 hybrid electrodes were implanted in 28 patients. Hybrids (diameter 800 µm) are made of 6 or 9 macro-contacts and 2 or 3 tetrodes (diameter 70-80 µm). RESULTS: No clinical complication or adverse event was associated with the hybrids. Impedance and noise of recordings were stable over time. The design enabled multiscale spatial analyses that revealed physiopathological events which were sometimes specific to one tetrode, but could not be recorded on the macro-contacts. After spike sorting, the single-unit yield was similar to other hybrid electrodes and was sometimes as high as >10 neurons per tetrode. COMPARISON WITH EXISTING METHOD(S): This new hybrid electrode has a smaller diameter than other available hybrid electrodes. It provides novel spatial information due to the configuration of the tetrodes. The single-unit yield appears promising. CONCLUSIONS: This new hybrid electrode is safe, easy to use, and works satisfactorily for conducting multi-scale seizure and physiological analyses.


Assuntos
Epilepsia , Neurônios , Potenciais de Ação , Eletrodos , Eletrodos Implantados , Humanos , Convulsões
6.
Physiol Rep ; 7(3): e13992, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30740934

RESUMO

We examined the effect of adenosine and of adenosine A1 receptor blockage on short-term synaptic plasticity in slices of adult mouse anterior piriform cortex maintained in vitro in an in vivo-like ACSF. Extracellular recording of postsynaptic responses was performed in layer 1a while repeated electrical stimulation (5-pulse-trains, frequency between 3.125 and 100 Hz) was applied to the lateral olfactory tract. Our stimulation protocol was aimed at covering the frequency range of oscillatory activities observed in the olfactory bulb in vivo. In control condition, postsynaptic response amplitude showed a large enhancement for stimulation frequencies in the beta and gamma frequency range. A phenomenological model of short-term synaptic plasticity fitted to the data suggests that this frequency-dependent enhancement can be explained by the interplay between a short-term facilitation mechanism and two short-term depression mechanisms, with fast and slow recovery time constants. In the presence of adenosine, response amplitude evoked by low-frequency stimulation decreased in a dose-dependent manner (IC50  = 70 µmol/L). Yet short-term plasticity became more dominated by facilitation and less influenced by depression. Both changes compensated for the initial decrease in response amplitude in a way that depended on stimulation frequency: compensation was strongest at high frequency, up to restoring response amplitudes to values similar to those measured in control condition. The model suggested that the main effects of adenosine were to decrease neurotransmitter release probability and to attenuate short-term depression mechanisms. Overall, these results suggest that adenosine does not merely inhibit neuronal activity but acts in a more subtle, frequency-dependent manner.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Adenosina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Córtex Piriforme/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Estimulação Elétrica , Feminino , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Córtex Piriforme/fisiologia , Receptor A1 de Adenosina/metabolismo , Fatores de Tempo
7.
Clin Neurophysiol ; 130(4): 537-547, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30785010

RESUMO

OBJECTIVE: The mechanisms underlying epileptogenicity in tuberous sclerosis complex (TSC) are poorly understood. METHODS: We analysed neuronal spiking activity (84 neurons), fast ripples (FRs), local field potentials and intracranial electroencephalogram during interictal epileptiform discharges (IEDs) in the tuber and perituber of a patient using novel hybrid electrodes equipped with tetrodes. RESULTS: IEDs were recorded in the tuber and perituber. FRs were recorded only in the tuber and only with the microelectrodes. A larger proportion of neurons in the tuber (57%) than in the perituber (17%) had firing-rates modulated around IEDs. CONCLUSIONS: A multi-scale analysis of neuronal activity, FRs and IEDs indicates a gradient of epileptogenicity running from the tuber to the perituber. SIGNIFICANCE: We demonstrate, for the first time in vivo, a gradient of epileptogenicity from the tuber to the perituber, which paves the way for future models of epilepsy in TSC. Our results also question the extent of the neurosurgical resection, including or not the perituber, that needs to be made in these patients.


Assuntos
Potenciais de Ação , Epilepsia/fisiopatologia , Esclerose Tuberosa/fisiopatologia , Adulto , Córtex Cerebral/citologia , Córtex Cerebral/fisiopatologia , Excitabilidade Cortical , Epilepsia/etiologia , Feminino , Humanos , Neurônios/fisiologia , Esclerose Tuberosa/complicações
8.
PLoS One ; 12(8): e0183246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28820903

RESUMO

Neuronal activity is characterized by a diversity of oscillatory phenomena that are associated with multiple behavioral and cognitive processes, yet the functional consequences of these oscillations are not fully understood. Our aim was to determine whether and how these different oscillatory activities affect short-term synaptic plasticity (STP), using the olfactory system as a model. In response to odorant stimuli, the olfactory bulb displays a slow breathing rhythm as well as beta and gamma oscillations. Since the firing of olfactory bulb projecting neurons is phase-locked with beta and gamma oscillations, structures downstream from the olfactory bulb should be driven preferentially at these frequencies. We examined STP exhibited by olfactory bulb inputs in slices of adult mouse piriform cortex maintained in vitro in an in vivo-like ACSF (calcium concentration: 1.1 mM). We replaced the presynaptic neuronal firing rate by repeated electrical stimulation (frequency between 3.125 and 100 Hz) applied to the lateral olfactory tract. Our results revealed a considerable enhancement of postsynaptic response amplitude for stimulation frequencies in the beta and gamma range. A phenomenological model of STP fitted to the data suggests that the experimental results can be explained by the interplay between three mechanisms: a short-term facilitation mechanism (time constant ≈160 msec), and two short-term depression mechanisms (recovery time constants <20 msec and ≈140 msec). Increasing calcium concentration (2.2 mM) resulted in an increase in the time constant of facilitation and in a strengthening of the slowest depression mechanism. As a result, response enhancement was reduced and its peak shifted toward the low beta and alpha ranges while depression became predominant in the gamma band. Using environmental conditions corresponding to those that prevail in vivo, our study shows that STP in the lateral olfactory tract to layer Ia synapse allows amplification of olfactory bulb inputs at beta and gamma frequencies.


Assuntos
Cálcio/metabolismo , Córtex Piriforme/fisiologia , Animais , Eletroencefalografia , Camundongos , Plasticidade Neuronal , Córtex Piriforme/metabolismo
9.
J Neurochem ; 140(6): 919-940, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28072448

RESUMO

Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.


Assuntos
Fosfatase Alcalina/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipofosfatasia/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Fosfatase Alcalina/deficiência , Animais , Feminino , Hipofosfatasia/genética , Masculino , Camundongos , Camundongos Knockout
10.
Subcell Biochem ; 76: 239-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219715

RESUMO

Tissue non-specific alkaline phosphatase (TNAP) may be involved in the synthesis of GABA and adenosine, which are the main inhibitory neurotransmitters in cortex. We explored this putative TNAP function through electrophysiological recording (local field potential ) in slices of mouse somatosensory cortex maintained in vitro. We used tetramisole, a well documented TNAP inhibitor, to block TNAP activity. We expected that inhibiting TNAP with tetramisole would lead to an increase of neuronal response amplitude, owing to a diminished availability of GABA and/or adenosine. Instead, we found that tetramisole reduced neuronal response amplitude in a dose-dependent manner. Tetramisole also decreased axonal conduction velocity. Levamisole had identical effects. Several control experiments demonstrated that these actions of tetramisole were independent from this compound acting on TNAP. In particular, tetramisole effects were not stereo-specific and they were not mimicked by another inhibitor of TNAP, MLS-0038949. The decrease of axonal conduction velocity and preliminary intracellular data suggest that tetramisole blocks voltage-dependent sodium channels. Our results imply that levamisole or tetramisole should not be used with the sole purpose of inhibiting TNAP in living excitable cells as it will also block all processes that are activity-dependent. Our data and a review of the literature indicate that tetramisole may have at least four different targets in the nervous system. We discuss these results with respect to the neurological side effects that were observed when levamisole and tetramisole were used for medical purposes, and that may recur nowadays due to the recent use of levamisole and tetramisole as cocaine adulterants.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Córtex Cerebral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Levamisol/farmacologia , Neurônios/efeitos dos fármacos , Tetramizol/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Feminino , Camundongos , Neurônios/fisiologia , Transmissão Sináptica/efeitos dos fármacos
11.
J Neurophysiol ; 108(7): 2033-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22815398

RESUMO

The spatiotemporal features of the "static" receptive field (RF), as revealed with flashing bars or spots, determine other RF properties. We examined how some of these static RF features vary with contrast and contrast adaptation in area V1 of the anesthetized macaque monkey. RFs were mapped with light and dark flashing bars presented at three different contrasts, with the low and medium contrasts eliciting approximately 1/3 and 2/3 of the high-contrast response amplitude. The main results are as follows: 1) RF widths decreased when contrast decreased; however, the amount of decrease was less than that expected from an iceberg model and closer to the expectation of a contrast invariance of the RF width. 2) Area tuning experiments with drifting gratings showed an opposite effect of contrast: an increase in preferred stimulus diameter when contrast decreased. This implies that the effect of contrast on preferred stimulus size is not predictable from the static RF. 3) Contrast adaptation attenuated the effect of contrast on RF amplitude but did not significantly modify RF width. 4) RF subregion overlap was only marginally affected by changes in contrast and contrast adaptation; the classification of cells as simple and complex, when established from subregion overlap, appears to be robust with respect to changes in contrast and adaptation state. Previous studies have shown that the spatiotemporal features of the RF depend largely on the stimuli used to map the RF. This study shows that contrast is one elemental feature that contributes to the dynamics of the RF.


Assuntos
Adaptação Fisiológica , Sensibilidades de Contraste , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Macaca fascicularis , Masculino , Modelos Neurológicos , Estimulação Luminosa , Vias Visuais/fisiologia
12.
J Neurophysiol ; 103(2): 677-97, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906874

RESUMO

The aim of the present study was to characterize the spatial and temporal features of synaptic and discharge receptive fields (RFs), and to quantify their relationships, in cat area 17. For this purpose, neurons were recorded intracellularly while high-frequency flashing bars were used to generate RFs maps for synaptic and spiking responses. Comparison of the maps shows that some features of the discharge RFs depended strongly on those of the synaptic RFs, whereas others were less dependent. Spiking RF duration depended poorly and spiking RF amplitude depended moderately on those of the underlying synaptic RFs. At the other extreme, the optimal spatial frequency and phase of the discharge RFs in simple cells were almost entirely inherited from those of the synaptic RFs. Subfield width, in both simple and complex cells, was less for spiking responses compared with synaptic responses, but synaptic to discharge width ratio was relatively variable from cell to cell. When considering the whole RF of simple cells, additional variability in width ratio resulted from the presence of additional synaptic subfields that remained subthreshold. Due to these additional, subthreshold subfields, spatial frequency tuning predicted from synaptic RFs appears sharper than that predicted from spiking RFs. Excitatory subfield overlap in spiking RFs was well predicted by subfield overlap at the synaptic level. When examined in different regions of the RF, latencies appeared to be quite variable, but this variability showed negligible dependence on distance from the RF center. Nevertheless, spiking response latency faithfully reflected synaptic response latency.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Evocados Visuais/fisiologia , Rede Nervosa/fisiologia , Transmissão Sináptica/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Animais , Gatos , Estimulação Luminosa/métodos
13.
PLoS One ; 4(3): e4781, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19274097

RESUMO

BACKGROUND: Studies in rodents and carnivores have shown that orientation tuning width of single neurons does not change when stimulus contrast is modified. However, in these studies, stimuli were presented for a relatively long duration (e. g., 4 seconds), making it possible that contrast adaptation contributed to contrast-invariance of orientation tuning. Our first purpose was to determine, in marmoset area V1, whether orientation tuning is still contrast-invariant with the stimulation duration is comparable to that of a visual fixation. METHODOLOGY/PRINCIPAL FINDINGS: We performed extracellular recordings and examined orientation tuning of single-units using static sine-wave gratings that were flashed for 200 msec. Sixteen orientations and three contrast levels, representing low, medium and high values in the range of effective contrasts for each neuron, were randomly intermixed. Contrast adaptation being a slow phenomenon, cells did not have enough time to adapt to each contrast individually. With this stimulation protocol, we found that the tuning width obtained at intermediate contrast was reduced to 89% (median), and that at low contrast to 76%, of that obtained at high contrast. Therefore, when probed with briefly flashed stimuli, orientation tuning is not contrast-invariant in marmoset V1. Our second purpose was to determine whether contrast adaptation contributes to contrast-invariance of orientation tuning. Stationary gratings were presented, as previously, for 200 msec with randomly varying orientations, but the contrast was kept constant within stimulation blocks lasting >20 sec, allowing for adaptation to the single contrast in use. In these conditions, tuning widths obtained at low contrast were still significantly less than at high contrast (median 85%). However, tuning widths obtained with medium and high contrast stimuli no longer differed significantly. CONCLUSIONS/SIGNIFICANCE: Orientation tuning does not appear to be contrast-invariant when briefly flashed stimuli vary in both contrast and orientation, but contrast adaptation partially restores contrast-invariance of orientation tuning.


Assuntos
Sensibilidades de Contraste/fisiologia , Neurônios/fisiologia , Orientação/fisiologia , Animais , Callithrix , Eletroencefalografia , Feminino , Fixação Ocular , Lobo Frontal/fisiologia , Masculino , Estimulação Luminosa
14.
Cereb Cortex ; 18(5): 1058-78, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17720684

RESUMO

Neurons in cat area 17 can be grouped in 4 different electrophysiological cell classes (regular spiking, intrinsically bursting, chattering, and fast spiking [FS]). However, little is known of the functional properties of these different cell classes. Here we compared orientation and direction selectivity between these cell classes in cat area 17 and found that a subset of FS inhibitory neurons, usually with complex receptive fields, exhibited little selectivity in comparison with other cell types. Differences in occurrence and amplitude of gamma-range membrane fluctuations, as well as in numbers of action potentials in response to optimal visual stimuli, did not parallel differences observed for orientation and direction selectivity. Instead, differences in selectivity resulted mostly from differences in tuning of the membrane potential responses, although variations in spike threshold also contributed: weakly selective FS neurons exhibited both a lower spike threshold and more broadly tuned membrane potential responses in comparison with the other cell classes. Our results are consistent with the hypothesis that a subgroup of FS neurons receives connections and possesses intrinsic properties allowing the generation of weakly selective responses. The existence of weakly selective inhibitory neurons is consistent with orientation selectivity models that rely on broadly tuned inhibition.


Assuntos
Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Orientação/fisiologia , Córtex Visual/fisiologia , Animais , Gatos , Análise por Conglomerados , Eletrofisiologia , Modelos Neurológicos , Neurônios/citologia , Neurônios/fisiologia , Sinapses/fisiologia , Córtex Visual/citologia
15.
Cereb Cortex ; 16(5): 688-95, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16107589

RESUMO

Repetitive stimulation of synaptic connections in the cerebral cortex often induces short-term synaptic depression (STD), a property directly related to the probability of transmitter release and critical for the computational properties of the network. In order to explore how spontaneous activity in the network affects this property, we first studied STD in cortical slices that were either silent or that displayed spontaneous rhythmic slow oscillations resembling those recorded during slow wave sleep in vivo. STD was considerably reduced by the occurrence of spontaneous rhythmic activity in the cortical network. Once the rhythmic activity started, depression decreased over time in parallel with the duration and intensity of the ongoing activity until a plateau was reached. Thalamocortical and intracortical synaptic potentials studied in vivo also showed stronger depression in a silent than in an active cortical network, and the depression values in the active cortical network in vivo were indistinguishable from those found in active slices in vitro. We suggest that this phenomenon is due to the different steady states of the synapses in active and in silent networks.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Anestesia , Animais , Gatos , Estimulação Elétrica , Eletrodos Implantados , Eletrofisiologia , Feminino , Furões , Técnicas In Vitro , Masculino , Tálamo/citologia , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia
16.
J Neurosci ; 25(7): 1866-80, 2005 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-15716423

RESUMO

We examined the mechanisms through which the prolonged presentation of either a high-contrast stimulus or an artificial scotoma [equivalent to the stimulation of the receptive field (RF) surround] induces changes in the RF properties of neurons intracellularly recorded in cat primary visual cortex. Discharge and synaptic RFs were quantitatively characterized using bright and dark bars randomly flashed in various positions. Compared with the lack of stimulation (0% contrast for 15-30 s), stimulation with high-contrast sine-wave gratings (15-30 s) was followed by a strong reduction in gain and a weak but significant reduction in width of spike discharge RFs. These reductions were accompanied by a membrane potential hyperpolarization, a decrease of synaptic RF width, and varying changes of synaptic RF gain. Passive hyperpolarization by DC injection also produced significant reduction in the width and gain of discharge RF. Mimicking, in single neurons, high-contrast stimulation with high-intensity current injection also induced a membrane potential hyperpolarization, whose amplitude was correlated with discharge RF gain and width changes. Recovery from adaptation to high-contrast stimulation during the period of gray screen or scotoma presentation was associated with an increase in gain and discharge RF size. Stimulation of the RF surround with an artificial scotoma did not have any additional aftereffects over those of adaptation to a gray screen, indicating that the contraction and expansion of RF gain and size are attributable to intrinsic and synaptic mechanisms underlying adaptation and de-adaptation to strong visual stimuli.


Assuntos
Mapeamento Encefálico , Sinapses/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação , Adaptação Fisiológica , Pós-Imagem/fisiologia , Animais , Gatos , Membrana Celular/fisiologia , Sensibilidades de Contraste , Potenciais da Membrana , Plasticidade Neuronal , Neurônios/fisiologia , Estimulação Luminosa , Escotoma/fisiopatologia
17.
J Neurophysiol ; 89(3): 1541-66, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12626627

RESUMO

To facilitate the characterization of cortical neuronal function, the responses of cells in cat area 17 to intracellular injection of current pulses were quantitatively analyzed. A variety of response variables were used to separate the cells into subtypes using cluster analysis. Four main classes of neurons could be clearly distinguished: regular spiking (RS), fast spiking (FS), intrinsic bursting (IB), and chattering (CH). Each of these contained significant subclasses. RS neurons were characterized by trains of action potentials that exhibited spike frequency adaptation. Morphologically, these cells were spiny stellate cells in layer 4 and pyramidal cells in layers 2, 3, 5, and 6. FS neurons had short-duration action potentials (<0.5 ms at half height), little or no spike frequency adaptation, and a steep relationship between injected current intensity and spike discharge frequency. Morphologically, these cells were sparsely spiny or aspiny nonpyramidal cells. IB neurons typically generated a low frequency (<425 Hz) burst of spikes at the beginning of a depolarizing current pulse followed by a tonic train of action potentials for the remainder of the pulse. These cells were observed in all cortical layers, but were most abundant in layer 5. Finally, CH neurons generated repetitive, high-frequency (350-700 Hz) bursts of short-duration (<0.55 ms) action potentials. Morphologically, these cells were layer 2-4 (mainly layer 3) pyramidal or spiny stellate neurons. These results indicate that firing properties do not form a continuum and that cortical neurons are members of distinct electrophysiological classes and subclasses.


Assuntos
Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Gatos , Tamanho Celular/fisiologia , Análise por Conglomerados , Impedância Elétrica , Estimulação Elétrica , Eletrofisiologia , Feminino , Masculino , Periodicidade , Células Piramidais/citologia , Campos Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...