Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 132: 86-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23398964

RESUMO

In this article we present a statistical fitting method for evaluation of atomic reconstructions which does not require a coarse-graining step. The fitting compares different models of chemical structure in their capability to explain the measured data set by a least square type merit function. Only preliminary qualitative assumptions about the possible chemical structure are required, while accurate quantitative parameters of the chosen model are delivered by fitting. The technique is particularly useful for singular defect structures with very high composition gradients, for which iso-concentration surfaces determined by coarse-graining become questionable or impossible. We demonstrate that particularly detailed information can be gained from triple junctions and grain boundaries.

2.
Small ; 8(4): 569-77, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22183873

RESUMO

The fabrication of thin organic films covalently grafted onto silicon substrates is of significant interest, as they are expected to give access to a broad range of new materials for integration into microelectronic applications. Covalent layer-by-layer (LbL) assembly offers a high degree of freedom when designing such thin films. In this work an approach for the preparation of covalent redox active molecular multilayers on silicon (100) surfaces is presented using a highly branched decaallylferrocene and thiol-ene click chemistry. The multilayers are analyzed by ellipsometry, X-ray photoelectron sprectroscopy, and cyclic voltammetry. The results indicate that the multilayer growth is linear for at least sixteen layers and the density of ferrocenes per layer is in the range of 6 × 10⁻¹¹ mol cm⁻². Moreover, this method for LbL assembly is extended to surfaces which have been locally passivated by microcontact printing. By atomic force microscopy measurements it is possible to show that the covalent LbL deposition proceeds exclusively in the nonpassivated areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...