Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761228

RESUMO

The impact of synthetic packaging on environmental pollution has been observed for years. One of the recent trends of green technology is the development of biomaterials made from food processing waste as an alternative to plastic packaging. Polymers obtained from some polysaccharides, such as chitosan, could be an excellent solution. This study investigated the biodegradability of chitosan-metal oxide films (ZnO, TiO2, Fe2O3) and chitosan-modified graphene films (CS-GO-Ag) in a soil environment. We have previously demonstrated that these films have excellent mechanical properties and exhibit antibacterial activity. This study aimed to examine these films' biodegradability and the possibility of their potential use in the packaging industry. The obtained results show that soil microorganisms were able to utilize chitosan films as the source of carbon and nitrogen, thus providing essential evidence about the biodegradability of CS, CS:Zn (20:1; 10:1), and CS:Fe2O3 (20:1) films. After 6 weeks of incubation, the complete degradation of the CS-Fe2O3 20:1 sample was noted, while after 8 weeks, CS-ZnO 20:1 and CS-ZnO 10:1 were degraded. This is a very positive result that points to the practical aspect of the biodegradability of such films in soil, where garbage is casually dumped and buried. Once selected, biodegradable films can be used as an alternative to plastic packaging, which contributes to the reduction in pollution in the environment.

2.
Sci Rep ; 12(1): 19068, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352006

RESUMO

Methylisothiazolinone (MIT) and chloroxylenol (PCMX) are popular disinfectants often used in personal care products (PCPs). The unregulated discharge of these micropollutants into the environment, as well as the use of sewage sludge as fertilizer and reclaimed water in agriculture, poses a serious threat to ecosystems. However, research into their ecotoxicity towards nontarget organisms is very limited. In the present study, for the first time, the ecotoxicity of biocides to Pseudomonas putida, Pseudomonas moorei, Sphingomonas mali, and Bacillus subtilis was examined. The toxicity of MIT and PCMX was evaluated using the microdilution method, and their influence on the viability of bacterial cells was investigated by the AlamarBlue® test. The ability of the tested bacteria to form biofilms was examined by a microtiter plate assay. Intracellular reactive oxygen species (ROS) production was measured with CM-H2DCFDA. The effect of MIT and PCMX on phytohormone indole-3-acetic acid (IAA) production was determined by spectrophotometry and LC‒MS/MS techniques. The permeability of bacterial cell membranes was studied using the SYTOX Green assay. Changes in the phospholipid profile were analysed using LC‒MS/MS. The minimal inhibitory concentrations (MICs) values ranged from 3.907 to 15.625 mg L-1 for MIT and 62.5 to 250 mg L-1 for PCMX, indicating that MIT was more toxic. With increasing concentrations of MIT and PCMX, the cell viability, biofilm formation ability and phytohormone synthesis were maximally inhibited. Moreover, the growth of bacterial cell membrane permeability and a significantly increased content of ROS were observed, indicating that the exposure caused serious oxidative stress and homeostasis disorders. Additionally, modifications in the phospholipid profile were observed in response to the presence of sublethal concentrations of the chemicals. These results prove that the environmental threat posed by MIT and PCMX must be carefully monitored, especially as their use in PCPs is still growing.


Assuntos
Desinfetantes , Solo , Espécies Reativas de Oxigênio , Cromatografia Líquida , Ecossistema , Reguladores de Crescimento de Plantas , Espectrometria de Massas em Tandem , Desinfetantes/toxicidade , Bactérias , Fosfolipídeos
3.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430973

RESUMO

In recent years, personal care products (PCPs) have surfaced as a novel class of pollutants due to their release into wastewater treatment plants (WWTPs) and receiving environments by sewage effluent and biosolid-augmentation soil, which poses potential risks to non-target organisms. Among PCPs, there are preservatives that are added to cosmetics for protection against microbial spoilage. This paper presents a review of the occurrence in different environmental matrices, toxicological effects, and mechanisms of microbial degradation of four selected preservatives (triclocarban, chloroxylenol, methylisothiazolinone, and benzalkonium chloride). Due to the insufficient removal from WWTPs, cosmetic preservatives have been widely detected in aquatic environments and sewage sludge at concentrations mainly below tens of µg L-1. These compounds are toxic to aquatic organisms, such as fish, algae, daphnids, and rotifers, as well as terrestrial organisms. A summary of the mechanisms of preservative biodegradation by micro-organisms and analysis of emerging intermediates is also provided. Formed metabolites are often characterized by lower toxicity compared to the parent compounds. Further studies are needed for an evaluation of environmental concentrations of preservatives in diverse matrices and toxicity to more species of aquatic and terrestrial organisms, and for an understanding of the mechanisms of microbial degradation. The research should focus on chloroxylenol and methylisothiazolinone because these compounds are the least understood.


Assuntos
Cosméticos , Esgotos , Animais , Conservantes Farmacêuticos/toxicidade
4.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408479

RESUMO

Quinoline is an N-heterocyclic compound commonly found in wastewater, especially that derived from coal processing, chemical, and pharmaceutical industries. In the present study, the microscopic fungus Curvularia lunata IM 4417, which is known to degrade various xenobiotics, was used. The aim of the research was to study the elimination of quinoline and its influence on fungal phospholipids, which are considered to be excellent indicators of environmental monitoring. Quinoline biodegradation products and phospholipid contents were analyzed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. C. lunata IM 4417 degraded quinoline, which led to the formation of conjugates of glucose with hydroxylated derivatives of the compound. Toxicity tests (Artoxkit M and Microtox assay) indicated that the elimination of lower concentrations of quinoline was efficient and led to a reduction in sample toxicity. The presence of quinoline also significantly affected the profile of fatty acids and phospholipids. The addition of quinoline to a culture of C. lunata IM 4417 caused an increase in the content of phosphatidylcholine (PC) and a decrease in the amount of phosphatidylethanolamine (PE), two major structural lipids. Additionally, decreases in the contents of phosphatidylinositol (PI) and phosphatidylserine (PS), which are responsible for tolerance to toxic substances, cell viability, and signal transduction, were noted. Thus, it can be concluded that the presence of quinoline modifies the membrane composition, and this change may be an important indicator of the presence of N-heterocyclic compounds or other toxins in the environment.


Assuntos
Fosfolipídeos , Quinolinas , Curvularia , Ácidos Graxos/análise , Fosfolipídeos/metabolismo , Quinolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...