Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668120

RESUMO

The effective purification of aqueous solutions of methylene blue dye was tested using polymer inclusion membranes (PIMs) that contained cellulose triacetate (CTA) as a polymer base, o-nitrophenyl octyl ether (o-NPOE) as a plasticizer, and meso-tetra methyl tetrakis-[methyl-2-(4-acetlphenoxy)] calix[4]pyrrole (KP) as a carrier. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to define the microstructure and surface of PIMs. Experimental results showed that, with an increased concentration of methylene blue in an aqueous solution, the removal percentage also increased. Further observation showed that the flux increased with the rise in the source phase pH values from 3 to 10. The carrier and plasticizer content in the membrane significantly influenced the membrane's transport properties. The optimal composition of the membrane in percent by weight for KP was 74% plasticizer; 18% support, and 8% carrier. The maximum MB removal (93.10%) was achieved at 0.10 M HCl solution as the receiving phase. It was shown that the membrane with optimal composition showed good reusability and enabled the easy and spontaneous separation of methylene blue from aqueous solutions.

2.
Carbohydr Polym ; 307: 120615, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781275

RESUMO

Production wastewater has evolved with dye and printing technology to become one of the major sources of soil and water contamination. The majority of dyes are carcinogenic, teratogenic, and mutagenic compounds. As a result, dealing with the dye in the wastewater is a critical issue. Insoluble polymers of ß-cyclodextrin (ß-CD), an inexpensive, sustainably produced macrocycle of glucose, have potential to remove dyes from water/wastewater via sorption due to formation of well-defined host-guest complexes. A novel polymeric sorbent based on cyclodextrin was successfully synthesized in a one-step reaction with few reagents. The polymer is characterized by multifunctionality and cross-linked network structure. The sorption studies aimed at the removal of methylene blue (MB) from aqueous solutions. The dominant model was Langmuir isotherm which indicated a sorption capacity of 96.15 mg/g. The rapid removal has already been obtained after 1 min, around 84 % of efficiency. The molecular mechanism of MB sorption by poly(ß-CD-BPDA) network is found mostly on the electrostatic interactions and partially on the inclusion of complexation inside supramolecular pores based on cyclodextrins' cavities, hydrogen bonding and slightly π-stacking. The presented polymer seems to be a promising sorbent for the removal of hazardous organic pollutants from water/wastewater.

3.
Membranes (Basel) ; 12(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35629819

RESUMO

Polymer membranes with immobilized ligands are encouraging alternatives for the removal of toxic metal ions from aquatic waste streams, including industrial wastewater, in view of their high selectivity, stability, removal efficacy and low energy demands. In this study, polymer inclusion membranes (PIMs) based on cellulose triacetate, with a calix[4]pyrrole derivative as an ion carrier, were tested for their capability to dispose mercury (Hg(II)) ions from industrial wastewater. The impacts were assessed relative to carrier content, the quantity of plasticizer in the membrane, the hydrocholoric acid concentration in the source phase, and the character of the receiving phase on the performance of Hg(II) elimination. Optimally designed PIMs could be an interesting option for the industrial wastewater treatment due to the high removal efficiency of Hg(II) and great repeatability.

4.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731385

RESUMO

Cellulose-triacetate-based polymer inclusion membranes (PIMs) with different concentrations of a calixpyrrole ester derivative as the membrane carrier were studied to determine their ability to transport Ag(I) from aqueous nitrate solutions. The effects of the concentrations of ion carriers and metal ions, the pH of the source aqueous phase, and stripping agents on the effective transport of Ag(I) were assessed. All studied parameters were found to be important factors for the transport of Ag(I) metal ions. The initial fluxes were determined at different temperatures. The prepared membranes were found to be highly permeable. The selectivity of silver transport from an aqueous solution containing Ag(I), Cu(II), Pb(II), Cd(II), Ni(II), Zn(II), and Co(II) ions was also investigated.


Assuntos
Membranas Artificiais , Nitratos/química , Polímeros/química , Pirróis/química , Prata/química
5.
Water Sci Technol ; 80(3): 448-457, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31596256

RESUMO

In the present study, continuous-flow column experiments (using glass column, Tygon tubing, and peristaltic pump Manostat Carter) were conducted to investigate the performance of permeable sorption barriers for the removal of cadmium and zinc from synthetic groundwater. Zeolite, ion-exchange resin and granular activated carbon as reactive materials were used. The effectiveness and stability of reactive materials were studied by monitoring of changes of metal ions concentration and selected background anions and cations concentration in groundwater during its flow through columns. Results showed that ion exchange resin was the most effective material of permeable reactive barrier (PRB). Performance of resin barrier remained effective (>99.5% metal ions removal) for the time corresponding to on average of about 10,000 min. The high efficiency of ion-exchange resin in PRB for removal of heavy metals from groundwater was coupled with its reactivity and long barrier lifetime. The breakthroughs in the column tests on activated carbon and zeolite using synthetic groundwater occurred much earlier as compared to resin. Therefore, the system using resin requires smaller amount to treat a given volume of groundwater as compared to other materials. Moreover, the presence of other ions did not impact on activity and permeability of barrier filled with resin.


Assuntos
Cádmio/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Zinco/análise , Íons
6.
Polymers (Basel) ; 11(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888152

RESUMO

Stricter environmental regulations regarding the discharge of toxic metals require developing various technologies for the removal of these metals from polluted effluents. The removal of toxic metal ions using immobilized membranes with doped ligands is a promising approach for enhancing environmental quality, because of the high selectivity and removal efficiency, high stability, and low energy requirements of the membranes. Cellulose triacetate-based polymer inclusion membranes (PIMs), with calix[4]resorcinarene derivative as an ion carrier, were analyzed to determine their ability for removal of Pb(II) ions from aqueous solutions. The effects of ion carrier concentration, plasticizer amount, pH of source aqueous phase, and receiving agents on the effective transport of Pb(II) were determined. All studied parameters were found to be important factors for the transport of Pb(II) ions. The PIM containing calix[4]resorcinarene derivative as an ion carrier showed high stability and excellent transport activity for selective removal of Pb(II) from the battery industry effluent, with a separation efficiency of 90%.

7.
RSC Adv ; 9(53): 31122-31132, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35529381

RESUMO

This paper discusses the results of studies on the transport of Ag(i) across polymer inclusion membranes (PIMs), derivatives of calixpyrroles with methyl (KP1) and carboxyl (KP2) groups, as ion carriers, o-nitrophenyl pentyl ether (o-NPPE) as a plasticizer and cellulose triacetate (CTA) as support. The influence of the pH of the source phase, metal concentration, stripping phase as well as carrier and plasticizer concentration on the efficiency of Ag(i) transport through PIM is presented. Long-term experiments with a supported liquid membrane and a plasticizer membrane demonstrate the durability of the studied PIMs. The obtained results indicate that the competitive transport of Cu(ii), Zn(ii), Ag(i) and Cd(ii) from the aqueous nitrate source phase through KP1 and KP2 is an effective separation method for Ag(i) ions. The prepared PIMs were characterized by scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques.

8.
Acta Crystallogr C ; 64(Pt 7): i50-2, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18599964

RESUMO

Icosacerium nonadecamagnesium henoctacontazinc, Ce(20)Mg(19)Zn(81), synthesized by fritting of the pure elements with subsequent arc melting, crystallizes with an unusually large cubic unit cell [space group F\overline{4}3m, a = 21.1979 (8) A] and represents a new structure type among the technologically important family of ternary rare earth-transition metal-magnesium intermetallics. The majority of atoms (two Ce and five Zn) display .3m site symmetry, two Ce and one Mg atom occupy three 2.mm positions, one Mg and one Zn have \overline{4}3m site symmetry, one Mg and three Zn atoms sit in ..m positions, and one Zn atom is in a general position. The Ce(20)Mg(19)Zn(81) structure can be described using the geometric concept of nested polyhedral units, by which it consists of four different polyhedral units, viz. A (Zn+Zn(4)+Zn(4)+Zn(12)+Ce(6)), B (Mg+Zn(12)+Ce(4)+Zn(24)+Ce(4)), C (Zn(4)+Zn(12)+Mg(6)) and D (Zn(4)+Zn(4)+Mg(12)+Ce(6)), with the outer construction unit being an octahedron or tetrahedron. All interatomic distances in the structure indicate metallic-type bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...