Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3360, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637611

RESUMO

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian olfactory receptor that recognizes compounds produced by mouse predators. While wildtype mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Camundongos , Aprendizagem/fisiologia , Mamíferos/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiologia , Antígenos CD20/metabolismo
2.
Res Sq ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37790559

RESUMO

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.

3.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609248

RESUMO

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.

4.
ACS Chem Neurosci ; 14(11): 1921-1929, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37159430

RESUMO

Opioid use disorder (OUD) affects millions of people throughout the United States, yet there are only three Food and Drug Administration-approved pharmacological treatments. Though these treatments have been shown to be effective, the number of overdose deaths continues to rise. The increase of fentanyl, fentanyl analogs, and adulterants in the illicit drug supply has further complicated treatment strategies. Preclinical researchers strive to model OUD to better understand this complicated disorder, and this research is a critical enabler for the development of novel treatments. As a result, there are many different preclinical models of OUD. Often, researchers form strong opinions on what they believe to be the "best" model to mimic the human condition. Here, we argue that researchers should be supportive of multiple models to promote new perspectives and discoveries and always consider the trends in human opioid use when designing preclinical studies. We describe the benefits of contingent and noncontingent models as well as models of opioid withdrawal and how each of these can help illuminate different components of OUD.


Assuntos
Overdose de Drogas , Overdose de Opiáceos , Transtornos Relacionados ao Uso de Opioides , Humanos , Estados Unidos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Overdose de Opiáceos/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Fentanila , Overdose de Drogas/tratamento farmacológico
5.
PLoS Comput Biol ; 16(5): e1007754, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32379823

RESUMO

The current academic culture facing women in science, technology, engineering, and math (STEM) fields in the United States has sparked the formation of grassroots advocacy groups to empower female scientists in training. However, the impact of these initiatives often goes unmeasured and underappreciated. Our Women in Science and Engineering (WiSE) organization serves postdoctoral researchers, graduate students, and research technicians (trainees) at a private research institute for biological sciences. Here we propose the following guidelines for cultivating a successful women-in-STEM-focused group based upon survey results from our own scientific community as well as the experience of our WiSE group leaders. We hope these recommendations can provide guidance to advocacy groups at other research and academic organizations that wish to strengthen their efforts. Whereas our own group specifically focuses on the underrepresented state of women in science, we hope these guidelines may be adapted and applied to groups that advocate for any minority group within the greater scientific community (i.e., those of gender, race/ethnicity, socioeconomic background, sexual orientation, etc.).


Assuntos
Educação/métodos , Mulheres/educação , Sucesso Acadêmico , Adulto , Disciplinas das Ciências Biológicas/educação , Engenharia/educação , Etnicidade , Feminino , Humanos , Matemática/educação , Grupos Minoritários/educação , Ciência/educação , Estudantes , Tecnologia/educação , Estados Unidos
6.
Cell ; 165(7): 1734-1748, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27238024

RESUMO

Odor perception in mammals is mediated by parallel sensory pathways that convey distinct information about the olfactory world. Multiple olfactory subsystems express characteristic seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-per-neuron pattern that facilitates odor discrimination. Sensory neurons of the "necklace" subsystem are nestled within the recesses of the olfactory epithelium and detect diverse odorants; however, they do not express known GPCR odor receptors. Here, we report that members of the four-pass transmembrane MS4A protein family are chemosensors expressed within necklace sensory neurons. These receptors localize to sensory endings and confer responses to ethologically relevant ligands, including pheromones and fatty acids, in vitro and in vivo. Individual necklace neurons co-express many MS4A proteins and are activated by multiple MS4A ligands; this pooling of information suggests that the necklace is organized more like subsystems for taste than for smell. The MS4As therefore define a distinct mechanism and functional logic for mammalian olfaction.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Olfato , Animais , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Odorantes , Neurônios Receptores Olfatórios/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...