Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Recent Pat Biotechnol ; 18(4): 316-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817009

RESUMO

BACKGROUND: Since the COVID-19 outbreak in early 2020, researchers and studies are continuing to find drugs and/or vaccines against the disease. As shown before, medicinal plants can be very good sources against viruses because of their secondary compounds which may cure diseases and help in survival of patients. There is a growing trend in the filed patents in this field. AIMS: In the present study, we test and suggest the inhibitory potential of five herbal based extracts including 7α-acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol with antivirus activity on the models of the significant antiviral targets for COVID-19 like spike glycoprotein, Papain-like protease (PLpro), non-structural protein 15 (NSP15), RNA-dependent RNA polymerase and core protease by molecular docking study. METHODS: The Salvia rythida root was extracted, dried, and pulverized by a milling machine. The aqueous phase and the dichloromethane phase of the root extractive were separated by two-phase extraction using a separatory funnel. The separation was performed using the column chromatography method. The model of the important antivirus drug target of COVID-19 was obtained from the Protein Data Bank (PDB) and modified. TO study the binding difference between the studied molecules, the docking study was performed. RESULTS: These herbal compounds are extracted from Salvia rhytidea, Curcuma zeodaria, Frankincense, Peganum harmala, and Cannabis herbs, respectively. The binding energies of all compounds on COVID-19 main targets are located in the limited area of 2.22-5.30 kcal/mol. This range of binding energies can support our hypothesis for the presence of the inhibitory effects of the secondary metabolites of mentioned structures on COVID-19. Generally, among the investigated herbal structures, Cannabidiol and 7α- acetoxyroyleanone compounds with the highest binding energy have the most inhibitory potential. The least inhibitory effects are related to the Curzerene and Incensole structures by the lowest binding affinity. CONCLUSION: The general arrangement of the basis of the potential barrier of binding energies is in the order below: Cannabidiol > 7α-acetoxyroyleanone > Harmaline> Incensole > Curzerene. Finally, the range of docking scores for investigated herbal compounds on the mentioned targets indicates that the probably inhibitory effects on these targets obey the following order: main protease> RNA-dependent RNA polymerase> PLpro> NSP15> spike glycoprotein.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Canabidiol , Simulação de Acoplamento Molecular , Extratos Vegetais , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Canabidiol/química , Canabidiol/farmacologia , SARS-CoV-2/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Harmalina/farmacologia , Harmalina/química , COVID-19/virologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Patentes como Assunto , Metabolismo Secundário
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122438, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758364

RESUMO

A new mixed-ligand Cu(II) complex formulated as [Cu(dipic)(amp)(H2O)].H2O (dipic: pyridine-2,6-dicarboxylic acid, amp: 2-amino-4-methylpyridine), was synthesized and structurally characterized by FTIR spectroscopy, CHN analysis, and the single-crystal X-ray crystallographic method. The complex crystallizes in an orthorhombic space group Pna21, and the coordination environment around the metal center was found to be a pentacoordinate CuN2O2OW distorted square-pyramidal geometry. In order to systematically explore a detailed in vitro and in silico study of the DNA binding of the title complex, various biophysical (UV-Vis absorption spectroscopy, fluorescence, competitive binding with ethidium bromide) and theoretical (DFT, molecular docking simulation, and QM/MM) methods were applied which revealed that the complex could intercalate with the insertion of the amp ligand between the DNA base pairs. The experimental thermodynamic parameters of the interaction revealed the spontaneity of the process and the domination of the hydrophobic interactions in the association and stabilization of the DNA-Cu(II) complex adduct, which was in line with the docking and QM/MM data. In vitro cytotoxic potential of the complex against the human breast adenocarcinoma (MCF-7) cells was examined using MTT assay, which indicated that cancerous cells showed inhibition in presence of the complex.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Substâncias Intercalantes/química , Simulação de Acoplamento Molecular , Ligantes , Complexos de Coordenação/química , Cobre/química , DNA/química , Antineoplásicos/farmacologia
3.
J Biomol Struct Dyn ; 41(14): 6883-6893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35993530

RESUMO

Apart from chemical and allopathic drugs, several medicinal plants contain phytochemicals that are potentially useful to counter the COVID-19 pandemic. Withania somnifera (Ashwagandha), which has a good effect on some viral infections, can be considered as a candidate against the virus. In the present study, thirty-nine natural compounds of Ashwagandha were investigated in terms of their binding to the important drug targets to treat the COVID-19. Although the molecular docking calculations reveal the binding affinities of the compounds to Mpro, TMPRSS2, NSP15, PLpro, Spike RBD + ACE2, RdRp and NSP12 as targets in controlling the coronavirus enzymes, Withanoside II is expected to be the most effective compound due to the high affinity in binding with many of considered targets. Furthermore, the Withanoside III, IV, V, X, and XI have favorable binding affinities as ligands with respect to the MM/GBSA calculations. The molecular dynamics simulations MD explore a stable hydrogen bond network between ligands and the active sites residues. Also, the dynamic fluctuations of the binding site residues verify their tight binding to ligands. Moreover, the stability of ligand-protein complexes is approved by the RMSD ranges lower than 0.5 Å in equilibration zone for all mentioned complexes. The TMPRSS2-Withanolide Q and Mpro-Withanoside IV complexes are the most stable pairs using the MM/GBSA calculations and MD simulation.Communicated by Ramaswamy H. Sarma.


TMPRSS2 receptor in terms of human relative proteins and Mpro and NSP15 receptors on coronavirus itself target are the effective target for inhibitory effects of Withania somnifera compounds.The highest binding affinity is related for WithanolideD, WithanolideQ, WithanosideIV, WithanosideIII, WithanosideV, WithanosideII, and 2,3-Didehydrosomnifericin ligands on the Spike RBD + ACE2, TMPRSS2, Mpro, PLpro, RdRp, NSP15, and NSP12 receptors, respectively.Withanolide compounds on human related proteins targets and Withanoside structures on coronavirus itself receptors have the highest inhibitory potential.Withanoside II ligand is expected to be the most effective compound due to the high affinity to bind to many considered targets.The stability of ligand-protein complexes is approved by the RMSD ranges lower than 0.5 Å in equilibration zone for WithanolideQ-TMPRSS2 and WithanosideIV-Mpro complexes.

4.
Front Chem ; 10: 964700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212071

RESUMO

The rice weevil, Sitophilus oryzae (L.), is a major pest of stored grains throughout the world, which causes quantitative and qualitative losses of food commodities. Eucalyptus essential oils (EOs) possess insecticidal and repellent properties, which make them a potential option for insect control in stored grains with environmentally friendly properties. In the current study, the binding mechanism of tyramine (TA) as a control compound has been investigated by funnel metadynamics (FM) simulation toward the homology model of tyramine1 receptor (TyrR) to explore its binding mode and key residues involved in the binding mechanism. EO compounds have been extracted from the leaf and flower part of Eucalyptus camaldulensis and characterized by GC/MS, and their effectiveness has been evaluated by molecular docking and conventional molecular dynamic (CMD) simulation toward the TyrR model. The FM results suggested that Asp114 followed by Asp80, Asn91, and Asn427 are crucial residues in the binding and the functioning of TA toward TyrR in Sitophilus Oryzae. The GC/MS analysis confirmed a total of 54 and 31 constituents in leaf and flower, respectively, where most of the components (29) are common in both groups. This analysis also revealed the significant concentration of Eucalyptus and α-pinene in leaves and flower EOs. The docking followed by CMD was performed to find the most effective compound in Eucalyptus EOs. In this regard, butanoic acid, 3-methyl-, 3-methyl butyl ester (B12) and 2-Octen-1-ol, 3,7-dimethyl- (B23) from leaf and trans- ß-Ocimene (G04) from flower showed the maximum dock score and binding free energy, making them the leading candidates to replace tyramine in TyrR. The MM-PB/GBSA and MD analysis proved that the B12 structure is the most effective compound in inhibition of TyrR.

5.
Biophys Rev ; 14(1): 303-315, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340601

RESUMO

Prostate-specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCP(II)), is a Zn-dependent metalloprotease that is known as a well prostate cancer indication and a potential targeting towards anti-cancer medicines and drug delivery. Because of its centrality in the diagnostics and treatment of prostate cancer, several types of inhibitors are designed with particular scaffolds. In this study, important groups of related inhibitors as well as reported experimental and computational studies are being reviewed, in which we examined three functional groups on each group of structures. The importance of computational biochemistry and the necessity of extensive research in this area on PSMA and its effective ligands are recommended.

6.
J Biomol Struct Dyn ; 37(1): 1-19, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29297251

RESUMO

In the present study, various hydrogen bonded complexes between five-fluorouracil (FU) with AT and GC base pairs were studied. First, to determine the affinity of different sites of the parent structures (FU, AT, and GC) for the hydrogen bond formation, their molecular electrostatic potentials are explored. The complexation energies and the strength of individual HBs of the plausible complexes were evaluated by energetic, geometric, spectroscopic, topologic, and molecular orbital descriptors. Our results reveal that, the FU-GC complexes (34.76-44.42 kcal mol-1) are more stable than the FU-AT ones (21.00-30.35 kcal mol-1). Among the complexes, the FU3-AT1 and FU3-GC3 are the most stable structures in the both series, which can be related to the sites with the highest affinity. Second, a detail analysis of the hydrogen bond descriptors were performed to elucidate the effect of FU on the strength of HB interactions within the base pairs. Interestingly, due to the formation of various interactions between the active sites of basic molecules, the strength of HB within the base pairs in the most cases increase about +2.75 and +.57 kcal mol-1 for the GC and AT nucleobases, respectively. Finally, several aromatic indices (HOMA, FLU, NICS (0) and NICS (1)) were applied to evaluate the significance of π-electron delocalization (π-ED) of 5/6 membered rings. These results clearly show that the π-ED of the benchmark systems increase with the formation or strengthening of the HB, which is in line with the resonance assisted hydrogen bond theory.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pareamento de Bases/efeitos dos fármacos , DNA/química , Fluoruracila/química , Fluoruracila/farmacologia , Modelos Químicos , Teoria Quântica , Algoritmos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Análise Espectral , Eletricidade Estática , Relação Estrutura-Atividade
7.
J Mol Graph Model ; 77: 86-93, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28850896

RESUMO

Some biological activities of quinones can be attributed to the H-bonding ability of acceptor oxygen atoms. According to the results obtained from the quantum mechanical calculations performed on a wide variety of complexes between the 1,4-benzoquinone (BQ) derivatives and HF molecules, the interplay between H-bonds and individual H-bond interaction energies (EHB) can be affected by the substituents placed on the six-membered ring of BQ. The total binding energies of complexes become more negative by the electron donating substituents (EDSs) while the changes are reversed by the electron withdrawing substituents (EWSs). The mutual interplay between the X-BQ⋯(HF)n (n=1-3) interactions has been investigated using the geometrical parameters, synergetic energies (SE) and the EHB values. Hydrogen bonding decreases the reduction potentials (E0red) and increases the electron affinities (EA) of X-BQ derivatives. Linear relationships have been observed between the E0red (and EA) values and the Hammett constants of substituents.


Assuntos
Benzoquinonas/química , Ligação de Hidrogênio , Hidrogênio/química , Termodinâmica , Elétrons , Modelos Moleculares
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 65(3-4): 605-15, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16529999

RESUMO

The intramolecular hydrogen bond, molecular structure and vibrational frequencies of tetra-acetylethane have been investigated by means of high-level density functional theory (DFT) methods with most popular basis sets. Fourier transform infrared and Fourier transform Raman spectra of this compound and its deuterated analogue were recorded in the regions 400-4000 cm(-1) and 40-4000 cm(-1), respectively. The calculated geometrical parameters of tetra-acetylethane were compared to the experimental results of this compound and its parent molecule (acetylacetone), obtained from X-ray diffraction. The O...O distance in tetra-acetylethane, about 2.424A, suggests that the hydrogen bond in this compound is stronger than acetylacetone. This conclusion is well supported by the NMR proton chemical shifts and O-H stretching mode at 2626 cm(-1). Furthermore, the calculated hydrogen bond energy in the title compound is 17.22 kcal/mol, which is greater than the acetylacetone value. On the other hand, the results of theoretical calculations show that the bulky substitution in alpha-position of acetylacetone results in an increase of the conjugation of pi electrons in the chelate ring. Finally, we applied the atoms in molecules (AIM) theory and natural bond orbital method (NBO) for detail analyzing the hydrogen bond in tetra-acetylethane and acetylacetone. These results are in agreement with the vibrational spectra interpretation and quantum chemical calculation results. Also, the conformations of methyl groups with respect to the plane of the molecule and with respect to each other were investigated.


Assuntos
Acetileno/análogos & derivados , Etano/análogos & derivados , Pentanonas/química , Acetileno/química , Etano/química , Ligação de Hidrogênio , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Vibração , Difração de Raios X
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 63(3): 729-39, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16024279

RESUMO

Fourier transform infrared and Fourier transform Raman spectra of 3-amino-1-phenyl-2-buten-1-one and its deuterated analogue were recorded in the regions 400-4,000 and 150-4,000 cm(-1), respectively. Furthermore, the molecular structure and vibrational frequencies of title compound were investigated by a series of density functional theoretical, DFT, and ab initio calculations at the post-Hartree-Fock (MP2) level. Although, the calculated frequencies are generally in agreement with the observed spectra but the DFT results are in much better quantitative agreement with the observed spectra than the MP2 results. The observed wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. The calculated geometrical parameters show a strong intramolecular hydrogen bond with a N...O distance of 2.621-2.668 A. This bond length is shorter than that of its parent, 4-amino-3-penten-2-one (with two methyl groups in the beta-position), which is in agreement with spectroscopic results. The topological properties of the electron density contributions for intramolecular hydrogen bond in 3-amino-1-phenyl-2-buten-1-one and 4-amino-3-penten-2-one have been analyzed in term of the Bader theory of atoms in molecules (AIM). These results also support the stronger hydrogen bond in the title compound with respect to the parent molecule.


Assuntos
Butanonas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Acetona/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Análise de Regressão , Software , Solventes/química , Espectrofotometria , Espectrofotometria Infravermelho
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 62(1-3): 343-52, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16257735

RESUMO

Fourier transform infrared and Fourier transform Raman spectra of Cu(II) bis-acetylacetone have been obtained. The geometry, frequency and intensity of the vibrational bands of this compound and its 1,5-(13)C(2), 3-(13)C, 1,3,5-(13)C(3), 2,4-(13)C(2), (18)O(2) and 2,4-(13)C(2)-(18)O(2) derivatives were obtained by the density functional theory (DFT) with the B3LYP functional and using the 6-31G(*) and 3-21G(*) basis sets. The calculated frequencies are compared with the solid infrared and Raman spectra. All the measured infrared and Raman bands were interpreted in terms of the calculated vibrational modes. The percentage of deviation of the bond lengths and bond angles gives a good picture of the normal modes, and serves as a basis for the assignment of the wavenumbers. Most computed bands are predicted to be at higher wavenumbers than the experimental bands. The calculated geometrical parameters show slight differences compared with the experimental results. These differences can be explained by the different physical state of Cu(II) bis-acetylacetone. The DFT-B3LYP calculations assumed a free molecule in the gas phase. Analysis of the vibrational spectra indicates a strong coupling between the chelated ring modes.


Assuntos
Acetona/análogos & derivados , Cobre/química , Compostos Organometálicos/química , Acetona/química , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Vibração
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 59(8): 1757-72, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12736062

RESUMO

Molecular structure and vibrational frequencies of triformylmethane have been investigated by means of density functional theory (DFT) calculations. The geometrical parameters and vibrational frequencies obtained in the B3LYP, B3PW91, BLYP, BPW91, G96LYP and G96PW91 levels of DFT and compared with the corresponding parameters of malonaldehyde (MA). Fourier transform infrared spectra of triformylmethane and its deuterated analogue were clearly assigned. Theoretical calculations show that the hydrogen bond strength of triformylmethane is stronger than that of MA, which is in agreement with spectroscopic results.


Assuntos
Carbono/química , Malondialdeído/análogos & derivados , Malondialdeído/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ligação de Hidrogênio , Modelos Químicos , Modelos Teóricos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...