Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 509(4): 988-993, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654934

RESUMO

Unsaturated carbonyl compounds, such as acrolein (ACR) and methyl vinyl ketone (MVK), are environmental pollutants, and are contained in smoke, automobile exhaust, and heated oil. We have previously reported that major cytotoxic factors in the gas phase of cigarette smoke are ACR and MVK. ACR and MVK induce cell damage by reactive oxygen species generation via protein kinase C and NADPH oxidases, and antioxidants, such as glutathione (GSH) and N-acetylcysteine (NAC), can effectively suppress their cytotoxic activities. In this study, we attempted to elucidate the molecular mechanism(s) for suppression of ACR- and MVK-induced cytotoxic activities by these antioxidants. GSH, NAC, L- and D-cysteines completely suppressed cell damage induced by gas phase extract of cigarette smoke. The results of HPLC and mass spectrometry showed that GSH and NAC directly reacted with ACR and MVK. Cysteines and cysteine derivatives suppressed ACR-induced GAPDH carbonylation, a representative protein for carbonylation. The current results suggest that GSH, NAC, and cysteines directly reacted with ACR and MVK, and suppressed these unsaturated carbonyl compounds-induced cell damage by inhibition of protein carbonylation.


Assuntos
Cisteína/farmacologia , Glutationa/farmacologia , Fumaça , Produtos do Tabaco/toxicidade , Acroleína/toxicidade , Aldeídos/toxicidade , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Cisteína/análogos & derivados , Poluentes Ambientais/toxicidade , Gases , Cetonas/toxicidade , Espectrometria de Massas , Carbonilação Proteica/efeitos dos fármacos
2.
PLoS One ; 9(9): e107856, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229830

RESUMO

Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤ 15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥ 20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml.


Assuntos
Citotoxinas/isolamento & purificação , Filtração/normas , Gases/química , Fumaça/análise , Produtos do Tabaco/análise , Animais , Soluções Tampão , Linhagem Celular Tumoral , Citotoxinas/toxicidade , Vidro/química , Humanos , Hidrocarbonetos/isolamento & purificação , Fosfatos/química , Ratos , Padrões de Referência , Reprodutibilidade dos Testes , Fumaça/efeitos adversos , Temperatura , Fatores de Tempo
3.
Toxicology ; 314(1): 1-10, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23981515

RESUMO

Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0µM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration-dependent cytotoxicity with an EC50 value of 264.0±16.9µM (n=3). The concentrations of acrolein, MVK and CPO in the CSE were 3368±334, 2429±123 and 392.9±31.8µM (n=4), respectively, which were higher than the cytotoxic concentrations. The cytotoxicity of acrolein and MVK consisted of plasma membrane damage and decreased cell viability: the plasma membrane damage was totally prevented by treatment with an inhibitor of PKC or NOX, whereas the decreased cell viability was only partially prevented by these inhibitors. The cytotoxicity of CPO consisted only of decreased cell viability, which was totally resistant to these inhibitors. These results show that acrolein and MVK are responsible for the acute cytotoxicity of the CSE through PKC/NOX-dependent and -independent mechanisms, whereas CPO is responsible for the delayed cytotoxicity of the CSE through a PKC/NOX-independent mechanism.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/análise , Butanonas/química , Butanonas/toxicidade , Linhagem Celular Tumoral , Sistema Livre de Células , Cromatografia Líquida de Alta Pressão , Ciclopentanos/química , Ciclopentanos/toxicidade , Interpretação Estatística de Dados , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidroxilaminas , Indicadores e Reagentes , Espectrometria de Massas , NADPH Oxidases/antagonistas & inibidores , Nicotina/química , Proteína Quinase C/antagonistas & inibidores , Alcatrões/farmacologia
4.
Environ Sci Pollut Res Int ; 17(3): 717-23, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19557451

RESUMO

BACKGROUND, AIM, AND SCOPE: We recently developed a new isolation method for diesel exhaust particles (DEP), involving successive extraction with H(2)O, sodium bicarbonate, and sodium hydroxide, in which the sodium hydroxide extract was found to consist of phenolic components. Analysis of the extract revealed that vasodilative-active nitrophenols are in DEP in significantly higher concentrations than those estimated by an earlier method involving a combination of solvent extraction and repeated chromatography. These findings indicated that our new procedure offers a simple, efficient, and reliable method for the isolation and identification of bioactive substances in DEP. This encouraged us to extend our work toward investigating new vasodilatory substances in the sodium bicarbonate extract. MATERIALS AND METHODS: DEP were collected from the exhaust of a 4JB1-type engine (ISUZU Automobile Co., Tokyo, Japan). GC-MS analysis was performed with a GCMS-QP2010 instrument (Shimadzu, Kyoto, Japan). RESULTS: DEP dissolved in 1-butanol was successively extracted with water, sodium bicarbonate, and then aqueous sodium hydroxide. The sodium bicarbonate extract was neutralized and the resulting mixture of acidic components was subjected to reverse-phase (RP) column chromatography followed by RP-HPLC with fractions assayed for vasodilative activity. This led to the identification of terephthalic acid, p-hydroxybenzoic acid, isophthalic acid, phthalic acid, 3-hydroxy-4-nitrobenzoic acid, 4-hydroxy-3-nitrophenol, and 1,4,5-naphthalene tricarboxylic acid as components of DEP. DISCUSSION: The sodium bicarbonate extract was rich in aromatic carboxylic acid components. Repeated reverse-phase chromatography resulted in the successful isolation of several acidic substances including the new vasodilative materials, 4-hydroxy-3-nitrobenzoic acid, and 3-hydroxy-4-nitrobenzoic acid. CONCLUSIONS: Our new fractionation method for DEP has made possible the isolation of new vasodilative compounds from the sodium bicarbonate extract.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Nitrofenóis/isolamento & purificação , Material Particulado/isolamento & purificação , Vasodilatadores/isolamento & purificação , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Animais , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Masculino , Material Particulado/química , Ácidos Ftálicos/química , Ácidos Ftálicos/isolamento & purificação , Ratos , Bicarbonato de Sódio/química , Vasodilatadores/química
5.
Phytochemistry ; 70(11-12): 1410-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19733868

RESUMO

The production of labeled brominated metabolites with radioactive (82)Br in Laurencia species was investigated as part of a study of the biosynthesis of halogenated metabolites from species belonging to the red algal genus Laurencia (Rhodomelaceae, Ceramiales). Radiobromide [(82)Br], thin-layer chromatography (TLC), and TLC-autoradioluminography (ARLG) were used. When cultured in artificial seawater medium (ASP(12)NTA including Na(82)Br) under 16:8 h light:dark (LD) illumination cycles for 24 h, each of the strains of Laurencia, Laurencia japonensis Abe et Masuda, Laurencia nipponica Yamada (laurencin-producing race and laureatin-producing race), and Laurencia okamurae Yamada, produced species- (or race-) specific (82)Br-containing metabolites. In the case of the laurencin-producing race of L. nipponica, laurencin and deacetyllaurencin were found to be produced in approximately 1:1 ratio, though laurencin is the major metabolite in the wild sample. Furthermore, when cultured in the dark, the production rates of brominated metabolites in Laurencia spp. were found to be diminished. The present study strongly indicates that the use of radiobromine [(82)Br] in combination with the TLC-ARLG method is an effective approach for investigating the biosynthesis of brominated metabolites in Laurencia.


Assuntos
Radioisótopos de Bromo/metabolismo , Cromatografia em Camada Fina , Hidrocarbonetos Bromados/metabolismo , Laurencia/metabolismo , Oxocinas/metabolismo , Autorradiografia , Escuridão , Marcação por Isótopo
6.
Environ Sci Pollut Res Int ; 15(4): 318-21, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18437438

RESUMO

GOAL, SCOPE, AND BACKGROUND: Diesel exhaust is believed to consist of thousands of organic constituents and is a major cause of urban pollution. We recently reported that a systematic separation procedure involving successive solvent extractions, followed by repeated column chromatography, resulted in the isolation of vasodilatory active nitrophenols. These findings indicated that the estimation of the amount of nitrophenols in the environment is important to evaluate their effect on human health. The isolation procedure, however, involved successive solvent extractions followed by tedious, repeated chromatography, resulting in poor fractionation and in a significant loss of accuracy and reliability. Therefore, it was crucial to develop an alternative, efficient, and reliable analytical method. Here, we describe a facile and efficient acid-base extraction procedure for the analysis of nitrophenols. MATERIALS AND METHODS: Diesel exhaust particles (DEP) were collected from the exhaust of a 4JB1-type engine (ISUZU Automobile Co., Tokyo, Japan). Gas chromatography-mass spectrometry (GC-MS) analysis was performed with a GCMS-QP2010 instrument (Shimadzu, Kyoto, Japan). RESULTS: A solution of DEP in 1-butanol was extracted with aqueous NaOH to afford a nitrophenol-rich oily extract. The resulting oil was methylated with trimethylsilyldiazomethane and subsequently subjected to GC-MS analysis, revealing that 4-nitrophenol, 3-methyl-4-nitrophenol, 2-methyl-4-nitrophenol, and 4-nitro-3-phenylphenol were present in significantly higher concentrations than those reported previously. DISCUSSION: Simple acid-base extraction followed by the direct analysis of the resulting extract by GC-MS gave only broad peaks of nitrophenols with a poor detection limit, while the GC-MS analysis of the sample pretreated with (trimethylsilyl)diazomethane gave satisfactorily clear chromatograms with sharp peaks and with a significantly lowered detection limit (0.5 ng/ml, approximately 100 times). CONCLUSION: The present method involving an acid-base extraction, in situ derivatization, and GC-MS analysis has shown to be a simple, efficient, and reliable method for the isolation and identification of the chemical substances in DEP.


Assuntos
Poluentes Atmosféricos/análise , Nanopartículas/análise , Nitrofenóis/análise , Material Particulado/análise , Emissões de Veículos/análise , Compostos de Bifenilo/análise , Cidades , Cresóis/análise , Diazometano/análogos & derivados , Diazometano/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Japão , Metilação , Nanopartículas/química , Material Particulado/química , Compostos de Trimetilsilil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...