Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 124: 104847, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555620

RESUMO

BACKGROUND: Inventory management or immediate availability of fracture plates can be problematic since for each surgical intervention a specific plate of varying size and functionality must be ordered. Modularization of the standard monolithic plate is proposed to address this issue. METHODS: The effects of four different unit module design parameters (type, degree of modularization, connector screw diameter, sandwich ratio) on the plate bending stiffness and failure are investigated in a finite element four-point-bending analysis. A chosen, best-performing modular plate is then tested in silico for a simple diaphyseal tibial fracture scenario under anatomical compressional, torsional, and bending loads. RESULTS: A modularization strategy is proposed to match the monolithic plate bending properties as closely as possible. With the best combination of design parameters, a fully modularized equivalent length plate with a 42.3% decrease in stiffness and 46.2% decrease in strength could be assembled. The chosen modular plate also displayed sufficient mechanical performance under the fracture fixation scenarios for a potentially successful osteosynthesis. CONCLUSIONS: Via computational methods, the viability of the modularization strategy as an alternate to the traditional monolithic plate is demonstrated. As a further realized advantage, the modular plates can alleviate stress shielding thanks to the reduced stiffness.


Assuntos
Placas Ósseas , Fraturas Ósseas , Fenômenos Biomecânicos , Simulação por Computador , Fixação Interna de Fraturas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...