Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 112(8): 1554-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25728932

RESUMO

The biotech industry is under increasing pressure to decrease both time to market and development costs. Simultaneously, regulators are expecting increased process understanding. High throughput process development (HTPD) employs small volumes, parallel processing, and high throughput analytics to reduce development costs and speed the development of novel therapeutics. As such, HTPD is increasingly viewed as integral to improving developmental productivity and deepening process understanding. Particle conditioning steps such as precipitation and flocculation may be used to aid the recovery and purification of biological products. In this first part of two articles, we describe an ultra scale-down system (USD) for high throughput particle conditioning (HTPC) composed of off-the-shelf components. The apparatus is comprised of a temperature-controlled microplate with magnetically driven stirrers and integrated with a Tecan liquid handling robot. With this system, 96 individual reaction conditions can be evaluated in parallel, including downstream centrifugal clarification. A comprehensive suite of high throughput analytics enables measurement of product titer, product quality, impurity clearance, clarification efficiency, and particle characterization. HTPC at the 1 mL scale was evaluated with fermentation broth containing a vaccine polysaccharide. The response profile was compared with the Pilot-scale performance of a non-geometrically similar, 3 L reactor. An engineering characterization of the reactors and scale-up context examines theoretical considerations for comparing this USD system with larger scale stirred reactors. In the second paper, we will explore application of this system to industrially relevant vaccines and test different scale-up heuristics.


Assuntos
Vacinas Bacterianas/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Ensaios de Triagem em Larga Escala , Polissacarídeos Bacterianos/isolamento & purificação , Tecnologia Farmacêutica/métodos , Vacinas Bacterianas/genética , Reatores Biológicos/microbiologia
2.
Biotechnol Bioeng ; 112(8): 1568-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25727194

RESUMO

Multivalent polysaccharide conjugate vaccines are typically comprised of several different polysaccharides produced with distinct and complex production processes. Particle conditioning steps, such as precipitation and flocculation, may be used to aid the recovery and purification of such microbial vaccine products. An ultra scale-down approach to purify vaccine polysaccharides at the micro-scale would greatly enhance productivity, robustness, and speed the development of novel conjugate vaccines. In part one of this series, we described a modular and high throughput approach to develop particle conditioning processes (HTPC) for biologicals that combines flocculation, solids removal, and streamlined analytics. In this second part of the series, we applied HTPC to industrially relevant feedstreams comprised of capsular polysaccharides (CPS) from several bacterial species. The scalability of HTPC was evaluated between 0.8 mL and 13 L scales, with several different scaling methodologies examined. Clarification, polysaccharide yield, impurity clearance, and product quality achieved with HTPC were reproducible and comparable with larger scales. Particle sizing was the response with greatest sensitivity to differences in processing scale and enabled the identification of useful scaling rules. Scaling with constant impeller tip speed or power per volume in the impeller swept zone offered the most accurate scale up, with evidence that time integration of these values provided the optimal basis for scaling. The capability to develop a process at the micro-scale combined with evidence-based scaling metrics provide a significant advance for purification process development of vaccine processes. The USD system offers similar opportunities for HTPC of proteins and other complex biological molecules.


Assuntos
Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Produtos Biológicos/imunologia , Produtos Biológicos/isolamento & purificação , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/isolamento & purificação , Tecnologia Farmacêutica/métodos , Vacinas Bacterianas/genética , Reatores Biológicos/microbiologia , Polissacarídeos Bacterianos/genética
3.
Vaccine ; 32(24): 2819-28, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24576849

RESUMO

The rapid development of purification processes for polysaccharide vaccines is constrained by a lack of analytical tools current technologies for the measurement of polysaccharide recovery and process-related impurity clearance are complex, time-consuming, and generally not amenable to high throughput process development (HTPD). HTPD is envisioned to be central to the improvement of existing polysaccharide manufacturing processes through the identification of critical process parameters that potentially impact the quality attributes of the vaccine and to the development of de novo processes for clinical candidates, across the spectrum of downstream processing. The availability of a fast and automated analytics platform will expand the scope, robustness, and evolution of Design of Experiment (DOE) studies. This paper details recent advances in improving the speed, throughput, and success of in-process analytics at the micro-scale. Two methods, based on modifications of existing procedures, are described for the rapid measurement of polysaccharide titre in microplates without the need for heating steps. A simplification of a commercial endotoxin assay is also described that features a single measurement at room temperature. These assays, along with existing assays for protein and nucleic acids are qualified for deployment in the high throughput screening of polysaccharide feedstreams. Assay accuracy, precision, robustness, interference, and ease of use are assessed and described. In combination, these assays are capable of measuring the product concentration and impurity profile of a microplate of 96 samples in less than one day. This body of work relies on the evaluation of a combination of commercially available and clinically relevant polysaccharides to ensure maximum versatility and reactivity of the final assay suite. Together, these advancements reduce overall process time by up to 30-fold and significantly reduce sample volume over current practices. The assays help build an analytical foundation to support the advent of HTPD technology for polysaccharide vaccines. It is envisaged that this will lead to an expanded use of Quality by Design (QbD) studies in vaccine process development.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Polissacarídeos/análise , Tecnologia Farmacêutica/métodos , Vacinas
4.
Vaccine ; 31(48): 5659-65, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24120674

RESUMO

The increasing requirement for multivalent vaccines containing diverse capsular polysaccharides has created an unmet need for a fast and straightforward assay for polysaccharide titer. We describe a novel and robust assay for the quantitation of anionic capsular polysaccharides. The binding of hexadecyltrimethyammonium bromide (Hb) to anionic capsular polysaccharides results in a precipitation reaction wherein the suspension turbidity is proportional to polysaccharide titer. The turbidity can be quickly measured as absorbance across a range of wavelengths that resolve scattering light. Carbohydrates comprised of repeating units of one to seven monosaccharides with phosphodiester groups, uronic acids, and sialic acids all reacted strongly and there does not appear to be specificity with respect to the particular anionic moiety. The assay is compatible with an array of common buffers across a pH range of 3.0-8.75 and with NaCl concentration exceeding 400 mM. Interference from DNA can be eliminated with a short incubation step with DNase. With these treatments, the assay has been employed in samples as complex as fermentation broth. A two-log dynamic range has been established with a mean relative standard deviation less than 10% across this range although inferior performance has been observed in fermentation broth. The precipitation assay enables the rapid quantitation of anionic polysaccharides. The resulting procedure can robustly measure the titer of myriad anionic capsular polysaccharides (CPS) in 96 samples in less than 30 min using low toxicity reagents and routine laboratory equipment. This development will greatly reduce the effort required to measure polysaccharide titer and yield during process development of polysaccharide vaccines.


Assuntos
Vacinas Bacterianas/química , Cátions/metabolismo , Precipitação Química , Ensaios de Triagem em Larga Escala/métodos , Polissacarídeos/análise , Tensoativos/metabolismo , Potência de Vacina , Vacinas Bacterianas/imunologia , Cetrimônio , Compostos de Cetrimônio/metabolismo , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...