Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 8(3): 2002065, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552854

RESUMO

A highly periodic electrostatic potential, even though established in van der Waals bonded organic crystals, is essential for the realization of a coherent band electron system. While impurity doping is an effective chemical operation that can precisely tune the energy of an electronic system, it always faces an unavoidable difficulty in molecular crystals because the introduction of a relatively high density of dopants inevitably destroys the highly ordered molecular framework. In striking contrast, a versatile strategy is presented to create coherent 2D electronic carriers at the surface of organic semiconductor crystals with their precise molecular structures preserved perfectly. The formation of an assembly of redox-active molecular dopants via a simple one-shot solution process on a molecularly flat crystalline surface allows efficient chemical doping and results in a relatively high carrier density of 1013 cm-2 at room temperature. Structural and magnetotransport analyses comprehensively reveal that excellent carrier transport and piezoresistive effects can be obtained that are similar to those in bulk crystals.

2.
Sci Rep ; 9(1): 15897, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685835

RESUMO

Building on significant developments in materials science and printing technologies, organic semiconductors (OSCs) promise an ideal platform for the production of printed electronic circuits. However, whether their unique solution-processing capability can facilitate the reliable mass manufacture of integrated circuits with reasonable areal coverage, and to what extent mass production of solution-processed electronic devices would allow substantial reductions in manufacturing costs, remain controversial. In the present study, we successfully manufactured a 4-inch (c.a. 100 mm) organic single-crystalline wafer via a simple, one-shot printing technique, on which 1,600 organic transistors were integrated and characterized. Owing to their single-crystalline nature, we were able to verify remarkably high reliability and reproducibility, with mobilities up to 10 cm2 V-1 s-1, a near-zero turn-on voltage, and excellent on-off ratio of approximately 107. This work provides a critical milestone in printed electronics, enabling industry-level manufacturing of OSC devices concomitantly with lowered manufacturing costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...