Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; : 114427, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986610

RESUMO

Kainate (KA)-type glutamate receptors (KARs) are implicated in various neuropsychiatric and neurological disorders through their ionotropic and metabotropic actions. However, compared to AMPA- and NMDA-type receptor functions, many aspects of KAR biology remain incompletely understood. Our study demonstrates an important role of KARs in organizing climbing fiber (CF)-Purkinje cell (PC) synapses and synaptic plasticity in the cerebellum, independently of their ion channel or metabotropic functions. The amino-terminal domain (ATD) of the GluK4 KAR subunit binds to C1ql1, provided by CFs, and associates with Bai3, an adhesion-type G protein-coupled receptor expressed in PC dendrites. Mice lacking GluK4 exhibit no KAR-mediated responses, reduced C1ql1 and Bai3 levels, and fewer CF-PC synapses, along with impaired long-term depression and oculomotor learning. Remarkably, introduction of the ATD of GluK4 significantly improves all these phenotypes. These findings demonstrate that KARs act as synaptic scaffolds, orchestrating synapses by forming a KAR-C1ql1-Bai3 complex in the cerebellum.

2.
Neuron ; 110(19): 3168-3185.e8, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36007521

RESUMO

Excitatory synapses are formed and matured by the cooperative actions of synaptic organizers, such as neurexins (Nrxns), neuroligins (Nlgns), LRRTMs, and Cbln1. Recent super-resolution nanoscopy developments have revealed that many synaptic organizers, as well as glutamate receptors and glutamate release machinery, exist as nanoclusters within synapses. However, it is unclear how such nanodomains interact with each other to organize excitatory synapses in vivo. By applying X10 expansion microscopy to epitope tag knockin mice, we found that Cbln1, Nlgn1, and LRRTM1, which share Nrxn as a common presynaptic receptor, form overlapping or separate nanodomains depending on Nrxn with or without a sequence encoded by splice site 4. The size and position of glutamate receptor nanodomains of GluD1, NMDA, and AMPA receptors were regulated by Cbln1, Nlgn1, and LRRTM1 nanodomains, respectively. These findings indicate that Nrxns anterogradely regulate the postsynaptic nanoscopic architecture of glutamate receptors through competition and coordination of Nrxn ligands.


Assuntos
Proteínas do Tecido Nervoso , Receptores de AMPA , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Epitopos , Ácido Glutâmico , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , N-Metilaspartato , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores Pré-Sinápticos , Sinapses/fisiologia
3.
Cerebellum ; 17(6): 709-721, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30046996

RESUMO

Synapses are precisely established, maintained, and modified throughout life by molecules called synaptic organizers, which include neurexins and neuroligins (Nlgn). Despite the importance of synaptic organizers in defining functions of neuronal circuits, the cellular and subcellular localization of many synaptic organizers has remained largely elusive because of the paucity of specific antibodies for immunohistochemical studies. In the present study, rather than raising specific antibodies, we generated knock-in mice in which a hemagglutinin (HA) epitope was inserted in the Nlgn1 gene. We have achieved high-throughput and precise gene editing by delivering the CRISPR/Cas9 system into zygotes. Using HA-Nlgn1 mice, we found that HA-Nlgn1 was enriched at synapses between parallel fibers and molecular layer interneurons (MLIs) and the glomeruli, in which mossy fiber terminals synapse onto granule cell dendrites. HA immunoreactivity was colocalized with postsynaptic density 95 at these synapses, indicating that endogenous Nlgn1 is localized at excitatory postsynaptic sites. In contrast, HA-Nlgn1 signals were very weak in dendrites and somata of Purkinje cells. Interestingly, HA-immunoreactivities were also observed in the pinceau, a specialized structure formed by MLI axons and astrocytes. HA-immunoreactivities in the pinceau were significantly reduced by knockdown of Nlgn1 in MLIs, indicating that in addition to postsynaptic sites, Nlgn1 is also localized at MLI axons. Our results indicate that epitope-tagging by electroporation-based gene editing with CRISPR/Cas9 is a viable and powerful method for mapping endogenous synaptic organizers with subcellular resolution, without the need for specific antibodies for each protein.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Cerebelo/citologia , Cerebelo/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Sistemas CRISPR-Cas , Moléculas de Adesão Celular Neuronais/genética , Epitopos , Técnicas de Silenciamento de Genes , Engenharia Genética , Células HEK293 , Hemaglutininas/genética , Hemaglutininas/imunologia , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Sinapses/metabolismo
4.
J Polym Sci B Polym Phys ; 52(20): 1357-1365, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25678738

RESUMO

Organic material characteristics of volume change and stress generation have attracted the attention of many researchers aiming to develop chemomechanical systems such as artificial muscles and polymer engines having the advantages of high energy density and silent operation. Although polymer gels offer a relatively large actuator stroke, their mechanical properties are relatively poor and the working temperature is relatively low, often limited by the evaporation of liquid if contained. We have developed an iodine-treated poly(vinyl alcohol) having extraordinarily large vapor-induced deswelling stress reaching 59 MPa, which is one to two orders of magnitude greater than those of ordinary polymer gels. Furthermore, this material has extremely large volumetric and gravimetric energy densities reaching 1.3 × 106 J m-3 and 9.6 × 102 J kg-1, respectively, and an elastic modulus of a few GPa and is heat-resistant to at least 200 °C. The high performance of this material can be demonstrated by a jump of a film. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1357-1365.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...