Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32677, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961948

RESUMO

Muscle trauma is one of the most common body injuries. Severe consequences of muscle trauma are ischemic injuries of the extremities. It is known that the intensification of free radical processes takes place in almost most acute diseases and conditions, including muscle trauma. C60 fullerene (C60) with powerful antioxidant properties can be considered a potential nanoagent for developing an effective therapy for skeletal muscle trauma. Here the water-soluble C60 was prepared and its structural organization has been studied by the atomic force microscopy and dynamic light scattering techniques. The selective biomechanical parameters of muscle soleus contraction and biochemical indicators of blood in rats were evaluated after intramuscular injection of C60 1 h before the muscle trauma initiation. Analysis of the force muscle response after C60 injection (1 mg kg-1 dose) showed its protective effect against ischemia and mechanical injury at the level of 30 ± 2 % and 17 ± 1 %, accordingly, relative to the pathology group. Analysis of biomechanical parameters that are responsible for correcting precise positioning confirmed the effectiveness of C60 at a level of more than 50 ± 3 % relative to the pathology group. Moreover, a decrease in the biochemical indicators of blood by about 33 ± 2 % and 10 ± 1 % in ischemia and mechanical injury, correspondingly, relative to the pathology group occurs. The results obtained demonstrate the ability of C60 to correct the functional activity of damaged skeletal muscle.

2.
Heliyon ; 9(8): e18745, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554800

RESUMO

The C60 fullerene effect (oral administration at a dose of 1 mg kg-1) on the selected biomechanical parameters of muscle gastrocnemius contraction, biochemical indicators of blood and muscle tissue as well as histological changes in rat muscle tissue after chronic alcoholization for 3, 6 and 9 months was studied in detail. Water-soluble C60 fullerenes were shown to reduce the pathological processes development in the muscle apparatus by an average of (35-40)%. In particular, they reduced the time occurrence of fatigue processes in muscle during the long-term development of alcoholic myopathy and inhibited oxidative processes in muscle, thereby preventing its degradation. These findings open up the possibility of using C60 fullerenes as potent antioxidants for the correction of the pathological conditions of the muscle system arising from alcohol intoxication.

3.
Nanomaterials (Basel) ; 12(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35564261

RESUMO

The development of an effective therapy aimed at restoring muscle dysfunctions in clinical and sports medicine, as well as optimizing working activity in general remains an urgent task today. Modern nanobiotechnologies are able to solve many clinical and social health problems, in particular, they offer new therapeutic approaches using biocompatible and bioavailable nanostructures with specific bioactivity. Therefore, the nanosized carbon molecule, C60 fullerene, as a powerful antioxidant, is very attractive. In this study, a comparative analysis of the dynamic of muscle soleus fatigue processes in rats was conducted using 50 Hz stimulation for 5 s with three consistent pools after intraperitoneal administration of the following antioxidants: C60 fullerene (a daily dose of 1 mg/kg one hour prior to the start of the experiment) and N-acetylcysteine (NAC; a daily dose of 150 mg/kg one hour prior to the start of the experiment) during five days. Changes in the integrated power of muscle contraction, levels of the maximum and minimum contraction force generation, time of reduction of the contraction force by 50% of its maximum value, achievement of the maximum force response, and delay of the beginning of a single contraction force response were analyzed as biomechanical markers of fatigue processes. Levels of creatinine, creatine phosphokinase, lactate, and lactate dehydrogenase, as well as pro- and antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione, and catalase activity) in the blood of rats were analyzed as biochemical markers of fatigue processes. The obtained data indicate that applied therapeutic drugs have the most significant effects on the 2nd and especially the 3rd stimulation pools. Thus, the application of C60 fullerene has a (50-80)% stronger effect on the resumption of muscle biomechanics after the beginning of fatigue than NAC on the first day of the experiment. There is a clear trend toward a positive change in all studied biochemical parameters by about (12-15)% after therapeutic administration of NAC and by (20-25)% after using C60 fullerene throughout the experiment. These findings demonstrate the promise of using C60 fullerenes as potential therapeutic nanoagents that can reduce or adjust the pathological conditions of the muscular system that occur during fatigue processes in skeletal muscles.

4.
Life (Basel) ; 12(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35330083

RESUMO

Biomechanical and biochemical changes in the muscle soleus of rats during imitation of hind limbs unuse were studied in the model of the Achilles tendon rupture (Achillotenotomy). Oral administration of water-soluble C60 fullerene at a dose of 1 mg/kg was used as a therapeutic agent throughout the experiment. Changes in the force of contraction and the integrated power of the muscle, the time to reach the maximum force response, the mechanics of fatigue processes development, in particular, the transition from dentate to smooth tetanus, as well as the levels of pro- and antioxidant balance in the blood of rats on days 15, 30 and 45 after injury were described. The obtained results indicate a promising prospect for C60 fullerene use as a powerful antioxidant for reducing and correcting pathological conditions of the muscular system arising from skeletal muscle atrophy.

5.
Heliyon ; 8(12): e12449, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590525

RESUMO

C60 fullerene (C60) as a nanocarbon particle, compatible with biological structures, capable of penetrating through cell membranes and effectively scavenging free radicals, is widely used in biomedicine. A protective effect of C60 on the biomechanics of fast (m. gastrocnemius) and slow (m. soleus) muscle contraction in rats and the pro- and antioxidant balance of muscle tissue during the development of muscle fatigue was studied compared to the same effect of the known antioxidant N-acetylcysteine (NAC). C60 and NAC were administered intraperitoneally at doses of 1 and 150 mg kg-1, respectively, daily for 5 days and 1 h before the start of the experiment. The following quantitative markers of muscle fatigue were used: the force of muscle contraction, the level of accumulation of secondary products of lipid peroxidation (TBARS) and the oxygen metabolite H2O2, the activity of first-line antioxidant defense enzymes (superoxide dismutase (SOD) and catalase (CAT)), and the condition of the glutathione system (reduced glutathione (GSH) content and the activity of the glutathione peroxidase (GPx) enzyme). The analysis of the muscle contraction force dynamics in rats against the background of induced muscle fatigue showed, that the effect of C60, 1 h after drug administration, was (15-17)% more effective on fast muscles than on slow muscles. A further slight increase in the effect of C60 was revealed after 2 h of drug injection, (7-9)% in the case of m. gastrocnemius and (5-6)% in the case of m. soleus. An increase in the effect of using C60 occurred within 4 days (the difference between 4 and 5 days did not exceed (3-5)%) and exceeded the effect of NAC by (32-34)%. The analysis of biochemical parameters in rat muscle tissues showed that long-term application of C60 contributed to their decrease by (10-30)% and (5-20)% in fast and slow muscles, respectively, on the 5th day of the experiment. At the same time, the protective effect of C60 was higher compared to NAC by (28-44)%. The obtained results indicate the prospect of using C60 as a potential protective nano agent to improve the efficiency of skeletal muscle function by modifying the reactive oxygen species-dependent mechanisms that play an important role in the processes of muscle fatigue development.

6.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202899

RESUMO

The biomechanical parameters of muscle soleus contraction in rats and their blood biochemical indicators after the intramuscular administration of water-soluble C60 fullerene at doses of 0.5, 1, and 2 mg/kg 1 h before the onset of muscle ischemia were investigated. In particular, changes in the contraction force of the ischemic muscle soleus, the integrated power of the muscle, the time to achieve the maximum force response, the dynamics of fatigue processes, and the parameters of the transition from dentate to smooth tetanus, levels of creatinine, creatine kinase, lactate and lactate dehydrogenase, and parameters of prooxidant-antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, and reduced glutathione and catalase) were analyzed. The positive therapeutic changes in the studied biomechanical and biochemical markers were revealed, which indicate the possibility of using water-soluble C60 fullerenes as effective prophylactic nanoagents to reduce the severity of pathological conditions of the muscular system caused by ischemic damage to skeletal muscles.


Assuntos
Materiais Biocompatíveis/química , Fulerenos/química , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Nanopartículas/química , Substâncias Protetoras/química , Animais , Materiais Biocompatíveis/farmacologia , Biomarcadores/sangue , Fenômenos Biomecânicos , Fenômenos Químicos , Modelos Animais de Doenças , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia
7.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067082

RESUMO

The widespread use of glyphosate as a herbicide in agriculture can lead to the presence of its residues and metabolites in food for human consumption and thus pose a threat to human health. It has been found that glyphosate reduces energy metabolism in the brain, its amount increases in white muscle fibers. At the same time, the effect of chronic use of glyphosate on the dynamic properties of skeletal muscles remains practically unexplored. The selected biomechanical parameters (the integrated power of muscle contraction, the time of reaching the muscle contraction force its maximum value and the reduction of the force response by 50% and 25% of the initial values during stimulation) of muscle soleus contraction in rats, as well as blood biochemical parameters (the levels of creatinine, creatine phosphokinase, lactate, lactate dehydrogenase, thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione and catalase) were analyzed after chronic glyphosate intoxication (oral administration at a dose of 10 µg/kg of animal weight) for 30 days. Water-soluble C60 fullerene, as a poweful antioxidant, was used as a therapeutic nanoagent throughout the entire period of intoxication with the above herbicide (oral administration at doses of 0.5 or 1 mg/kg). The data obtained show that the introduction of C60 fullerene at a dose of 0.5 mg/kg reduces the degree of pathological changes by 40-45%. Increasing the dose of C60 fullerene to 1 mg/kg increases the therapeutic effect by 55-65%, normalizing the studied biomechanical and biochemical parameters. Thus, C60 fullerenes can be effective nanotherapeutics in the treatment of glyphosate-based herbicide poisoning.


Assuntos
Fulerenos/uso terapêutico , Glicina/análogos & derivados , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Fenômenos Biomecânicos/efeitos dos fármacos , Catalase/sangue , Glutationa/sangue , Glicina/toxicidade , Peróxido de Hidrogênio/sangue , Contração Muscular/efeitos dos fármacos , Ratos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Glifosato
8.
Front Physiol ; 9: 517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867560

RESUMO

The aim of this study is to detect the effects of C60 fullerenes, which possess pronounced antioxidant properties, in comparison with the actions of the known exogenous antioxidants N-acetylcysteine (NAC) and ß-Alanine in terms of exercise tolerance and contractile property changes of the m. triceps surae (TS) during development of the muscle fatigue in rats. The electrical stimulation of the TS muscle during four 30 min series in control rats led to total reduction of the muscle contraction force. Furthermore, the effects of prior intraperitoneal (i.p.) or oral C60FAS application and preliminary i.p. injection of NAC or ß-Alanine on muscle contraction force under fatigue development conditions is studied. In contrast to control rats, animals with C60FAS, NAC, or ß-Alanine administration could maintain a constant level of muscle effort over five stimulation series. The accumulation of secondary products and changes in antioxidant levels in the muscle tissues were also determined after the fatigue tests. The increased levels of lactic acid, thiobarbituric acid reactive substances and H2O2 after stimulation were statistically significant with respect to intact muscles. In the working muscle, there was a significant (p < 0.05) increase in the activity of endogenous antioxidants: reduced glutathione, catalase, glutathione peroxidase, and superoxide dismutase. Treated animal groups showed a decrease in endogenous antioxidant activity relative to the fatigue-induced animals (P < 0.05). Oral C60FAS administration clearly demonstrated an action on skeletal muscle fatigue development similar to the effects of i.p. injections of the exogenous antioxidants NAC or ß-Alanine. This creates opportunities to oral use of C60FAS as a potential therapeutic agent. Due to the membranotropic activity of C60 fullerenes, non-toxic C60FAS has a more pronounced effect on the prooxidant-antioxidant homeostasis of muscle tissues in rats.

9.
J Nanobiotechnology ; 15(1): 8, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086894

RESUMO

BACKGROUND: Bioactive soluble carbon nanostructures, such as the C60 fullerene can bond with up to six electrons, thus serving by a powerful scavenger of reactive oxygen species similarly to many natural antioxidants, widely used to decrease the muscle fatigue effects. The aim of the study is to define action of the pristine C60 fullerene aqueous colloid solution (C60FAS), on the post-fatigue recovering of m. triceps surae in anaesthetized rats. RESULTS: During fatigue development, we observed decrease in the muscle effort level before C60FAS administration. After the application of C60FAS, a slower effort decrease, followed by the prolonged retention of a certain level, was recorded. An analysis of the metabolic process changes accompanying muscle fatigue showed an increase in the oxidative stress markers H 2 O 2 (hydrogen peroxide) and TBARS (thiobarbituric acid reactive substances) in relation to the intact muscles. After C60FAS administration, the TBARS content and H 2 O 2 level were decreased. The endogenous antioxidant system demonstrated a similar effect because the GSH (reduced glutathione) in the muscles and the CAT (catalase) enzyme activity were increased during fatigue. CONCLUSIONS: C60FAS leads to reduction in the recovery time of the muscle contraction force and to increase in the time of active muscle functioning before appearance of steady fatigue effects. Therefore, it is possible that C60FAS affects the prooxidant-antioxidant muscle tissue homeostasis, subsequently increasing muscle endurance.


Assuntos
Antioxidantes/uso terapêutico , Fulerenos/uso terapêutico , Fadiga Muscular , Músculo Esquelético/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Fulerenos/administração & dosagem , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Injeções Intramusculares , Masculino , Contração Muscular , Nanopartículas/administração & dosagem , Nanopartículas/química , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...