Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(12): e0072723, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37975660

RESUMO

It is unclear whether plasma is a reliable surrogate for target attainment in the epithelial lining fluid (ELF). The objective of this study was to characterize meropenem target attainment in plasma and ELF using prospective samples. The first 24-hour T>MIC was evaluated vs 1xMIC and 4xMIC targets at the patient (i.e., fixed MIC of 2 mg/L) and population [i.e., cumulative fraction of response (CFR) according to EUCAST MIC distributions] levels for both plasma and ELF. Among 65 patients receiving ≥24 hours of treatment, 40% of patients failed to achieve >50% T>4xMIC in plasma and ELF, and 30% of patients who achieved >50% T>4xMIC in plasma had <50% T>4xMIC in ELF. At 1xMIC and 4xMIC targets, 3% and 25% of patients with >95% T>MIC in plasma had <50% T>MIC in ELF, respectively. Those with a CRCL >115 mL/min were less likely to achieve >50%T>4xMIC in ELF (P < 0.025). In the population, CFR for Escherichia coli at 1xMIC and 4xMIC was >97%. For Pseudomonas aeruginosa, CFR was ≥90% in plasma and ranged 80%-85% in ELF at 1xMIC when a loading dose was applied. CFR was reduced in plasma (range: 75%-81%) and ELF (range: 44%-60%) in the absence of a loading dose at 1xMIC. At 4xMIC, CFR for P. aeruginosa was 60%-86% with a loading dose and 18%-62% without a loading dose. We found that plasma overestimated ELF target attainment inup to 30% of meropenem-treated patients, CRCL >115 mL/min decreased target attainment in ELF, and loading doses increased CFR in the population.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Meropeném/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Prospectivos , Infecções por Pseudomonas/tratamento farmacológico , Plasma , Testes de Sensibilidade Microbiana
2.
Microbiol Spectr ; : e0183821, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737625

RESUMO

In an attempt to identify novel bacterial species, microbiologists have examined a wide range of environmental niches. We describe the serendipitous discovery of a novel gram-negative bacterial species from a different type of extreme niche: a purchased vial of antibiotic. The vial of antibiotic hygromycin B was found to be factory contaminated with a bacterial species, which we designate Pseudomonas hygromyciniae sp. nov. The proposed novel species belongs to the P. fluorescens complex and is most closely related to P. brenneri, P. proteolytica, and P. fluorescens. The type strain Pseudomonas hygromyciniae sp. nov. strain SDM007T (SDM007T) harbors a novel 250 kb megaplasmid which confers resistance to hygromycin B and contains numerous other genes predicted to encode replication and conjugation machinery. SDM007T grows in hygromycin concentrations of up to 5 mg/mL but does not use the antibiotic as a carbon or nitrogen source. While unable to grow at 37°C ruling out its ability to infect humans, it grows and survives at temperatures between 4 and 30°C. SDM007T can infect plants, as demonstrated by the lettuce leaf model, and is highly virulent in the Galleria mellonella infection model but is unable to infect mammalian A549 cells. These findings indicate that commercially manufactured antibiotics represent another extreme environment that may support the growth of novel bacterial species. IMPORTANCE Physical and biological stresses in extreme environments may select for bacteria not found in conventional environments providing researchers with the opportunity to not only discover novel species but to uncover new enzymes, biomolecules, and biochemical pathways. This strategy has been successful in harsh niches such as hot springs, deep ocean trenches, and hypersaline brine pools. Bacteria belonging to the Pseudomonas species are often found to survive in these unusual environments, making them relevant to healthcare, food, and manufacturing industries. Their ability to survive in a variety of environments is mainly due to the high genotypic and phenotypic diversity displayed by this genus. In this study, we discovered a novel Pseudomonas sp. from a desiccated environment of a sealed antibiotic bottle that was considered sterile. A close genetic relationship with its phylogenetic neighbors reiterated the need to use not just DNA-based tools but also biochemical characteristics to accurately classify this organism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...