Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 104, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378836

RESUMO

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disabilities and the most prevalent monogenic cause of autism. Although the knockout (KO) of the Fmr1 gene homolog in mice is primarily used for elucidating the neurobiological substrate of FXS, there is limited association of the experimental data with the pathophysiological condition in humans. The use of Fmr1 KO rats offers additional translational validity in this regard. Therefore, we employed a multi-level approach to study the behavioral profile and the glutamatergic and GABAergic neurotransmission status in pathophysiology-associated brain structures of Fmr1 KO rats, including the recordings of evoked and spontaneous field potentials from hippocampal slices, paralleled with next-generation RNA sequencing (RNA-seq). We found that these rats exhibit hyperactivity and cognitive deficits, along with characteristic bidirectional glutamatergic and GABAergic alterations in the prefrontal cortex and the hippocampus. These results are coupled to affected excitability and local inhibitory processes in the hippocampus, along with a specific transcriptional profile, highlighting dysregulated hippocampal network activity in KO rats. Overall, our data provide novel insights concerning the biobehavioral profile of FmR1 KO rats and translationally upscales our understanding on pathophysiology and symptomatology of FXS syndrome.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Síndrome do Cromossomo X Frágil , Ratos , Camundongos , Animais , Humanos , Camundongos Knockout , Hipocampo/metabolismo , Encéfalo/metabolismo , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Modelos Animais de Doenças
2.
Front Pharmacol ; 12: 746935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776964

RESUMO

Clinical evidence and experimental studies have shown the psychotomimetic properties induced by ketamine. Moreover, acute or chronic ketamine (KET) administration has been widely used for modeling schizophrenia-like symptomatology and pathophysiology. Several studies have reported the antipsychotic potential of cannabidiol (CBD), while there is limited information on the cannabidiol effect on KET-induced schizophrenia-like impairments. Therefore, the goal of the present study was to evaluate neuroplastic changes induced by repeated KET administration, which is used as an experimental model of schizophrenia-with a behavioral focus on positive-like symptomatology- and to assess the modulatory role of CBD treatment. The present findings have shown a robust increase in motor activity in KET-treated rats, following a 10-day period of chronic administration at the sub-anesthetic dose of 30 mg/kg (i.p), that was reversed to normal by subsequent chronic CBD treatment. Concerning the expression of glutamate receptors, the current findings have shown region-dependent KET-induced constitutional alterations in NMDA and AMPA receptors that were modified by subsequent CBD treatment. Additionally, repeated KET administration increased ERK1/2 phosphorylation state in all regions examined, apart from the ventral hippocampus that was modulated by subsequent CBD treatment. The present results show, for the first time, a stimulated motor output coupled with a specific glutamatergic-related status and ERK1/2 activation following chronic KET administration that were attenuated by CBD treatment, in a region-dependent manner. These findings provide novel information concerning the antipsychotic potential of CBD using a specific design of chronic KET administration, thus contributing to experimental approaches that mirror the symptomatology and pathophysiology of schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...