Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397863

RESUMO

A combined computational and experimental study of 3D-printed scaffolds made from hybrid nanocomposite materials for potential applications in bone tissue engineering is presented. Polycaprolactone (PCL) and polylactic acid (PLA), enhanced with chitosan (CS) and multiwalled carbon nanotubes (MWCNTs), were investigated in respect of their mechanical characteristics and responses in fluidic environments. A novel scaffold geometry was designed, considering the requirements of cellular proliferation and mechanical properties. Specimens with the same dimensions and porosity of 45% were studied to fully describe and understand the yielding behavior. Mechanical testing indicated higher apparent moduli in the PLA-based scaffolds, while compressive strength decreased with CS/MWCNTs reinforcement due to nanoscale challenges in 3D printing. Mechanical modeling revealed lower stresses in the PLA scaffolds, attributed to the molecular mass of the filler. Despite modeling challenges, adjustments improved simulation accuracy, aligning well with experimental values. Material and reinforcement choices significantly influenced responses to mechanical loads, emphasizing optimal structural robustness. Computational fluid dynamics emphasized the significance of scaffold permeability and wall shear stress in influencing bone tissue growth. For an inlet velocity of 0.1 mm/s, the permeability value was estimated at 4.41 × 10-9 m2, which is in the acceptable range close to human natural bone permeability. The average wall shear stress (WSS) value that indicates the mechanical stimuli produced by cells was calculated to be 2.48 mPa, which is within the range of the reported literature values for promoting a higher proliferation rate and improving osteogenic differentiation. Overall, a holistic approach was utilized to achieve a delicate balance between structural robustness and optimal fluidic conditions, in order to enhance the overall performance of scaffolds in tissue engineering applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38083223

RESUMO

Through the recent years, tissue engineering has been proven as a solid substitute of autografts in the stimulation of bone tissue regeneration, through the development of three dimensional (3D) porous matrices, commonly known as scaffolds. In this work, we analysed two scaffold structures with 500µm pore size, by performing computational fluid dynamics simulations, to compare permeability, Wall Shear Stress (WSS), velocity and pressure distributions. Taking into account those parameters the geometry named as "PCL-50" was the best to anticipate showing a superior performance in supporting cell growth due to the improved flow characteristics in the scaffold.Clinical Relevance- Bone defects that require invasive surgical treatment with high risks in terms of success and effectiveness. Bone tissue engineering (BTE) in combination with the use of computational fluid dynamics (CFD) analysis tools aim to assist in designing optimal scaffolds that better promote bone growth and repair. The fluid dynamic characteristics of a porous scaffold plays a vital role in cell viability and cell growth, affecting the osteogenic performance of the scaffold.


Assuntos
Hidrodinâmica , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Osso e Ossos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...