Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137458

RESUMO

Drug-resistant epilepsy (DRE) is associated with high extracellular levels of glutamate. Studies support the idea that cannabidiol (CBD) decreases glutamate over-release. This study focused on investigating whether CBD reduces the evoked glutamate release in cortical synaptic terminals obtained from patients with DRE as well as in a preclinical model of epilepsy. Synaptic terminals (synaptosomes) were obtained from the epileptic neocortex of patients with drug-resistant temporal lobe epilepsy (DR-TLE, n = 10) or drug-resistant extratemporal lobe epilepsy (DR-ETLE, n = 10) submitted to epilepsy surgery. Synaptosomes highly purified by Percoll-sucrose density gradient were characterized by confocal microscopy and Western blot. Synaptosomes were used to estimate the high KCl (33 mM)-evoked glutamate release in the presence of CBD at different concentrations. Our results revealed responsive tissue obtained from seven patients with DR-TLE and seven patients with DR-ETLE. Responsive tissue showed lower glutamate release (p < 0.05) when incubated with CBD at low concentrations (less than 100 µM) but not at higher concentrations. Tissue that was non-responsive to CBD (DR-TLE, n = 3 and DR-ELTE, n = 3) showed high glutamate release despite CBD exposure at different concentrations. Simultaneously, a block of the human epileptic neocortex was used to determine its viability through whole-cell and extracellular electrophysiological recordings. The electrophysiological evaluations supported that the responsive and non-responsive human epileptic neocortices used in the present study exhibited proper neuronal viability and stability to acquire electrophysiological responses. We also investigated whether the subchronic administration of CBD could reduce glutamate over-release in a preclinical model of temporal lobe epilepsy. Administration of CBD (200 mg/kg, p.o. every 24 h for 7 days) to rats with lithium-pilocarpine-evoked spontaneous recurrent seizures reduced glutamate over-release in the hippocampus. The present study revealed that acute exposure to low concentrations of CBD can reduce the glutamate over-release in synaptic terminals obtained from some patients with DRE. This effect is also evident when applied subchronically in rats with spontaneous recurrent seizures. An important finding was the identification of a group of patients that were non-responsive to CBD effects. Future studies are essential to identify biomarkers of responsiveness to CBD to control DRE.

2.
Microvasc Res ; 132: 104059, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798551

RESUMO

The blood-brain barrier (BBB) maintains the optimal microenvironment for brain function. Tight junctions (TJs) allow endothelial cells to adhere to each other, leading to the formation of a barrier that prevents the penetration of most molecules via transcellular routes. Evidence has indicated that seizure-induced vascular endothelial growth factor (VEGF) type 2 receptor (VEGFR-2) pathway activation weakens TJs, inducing vasodilatation and increasing vascular permeability and subsequent brain injury. The present study focused on investigating the expression levels of VEGF-related (VEGF-A and VEGFR-2) and TJ-related proteins (claudin-5, occludin and ZO-1) in the neocortical microvasculature of patients with drug-resistant temporal lobe epilepsy (TLE). The results obtained from hippocampal sclerosis TLE (HS-TLE) patients were compared with those obtained from patients with TLE secondary to lesions (lesion-TLE) and autopsy samples. The Western blotting and immunofluorescence results showed that VEGF-A and VEGFR-2 protein expression levels were increased in HS-TLE and lesion-TLE patients compared to autopsy group. On the other hand, claudin-5 expression was higher in HS-TLE patients and lesion-TLE patients than autopsies. The expression level of occludin and ZO-1 was decreased in HS-TLE patients. Our study described modifications to the integrity of the BBB that may contribute to the pathogenesis of TLE, in which the VEGF system may play an important role. We demonstrated that the same modifications were present in both HS-TLE and lesion-TLE patients, which suggests that seizures modify these systems and that they are not associated with the establishment of epilepsy.


Assuntos
Barreira Hematoencefálica/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Microvasos/metabolismo , Neocórtex/irrigação sanguínea , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adolescente , Adulto , Barreira Hematoencefálica/patologia , Claudina-5/metabolismo , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/patologia , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Masculino , Microvasos/patologia , Pessoa de Meia-Idade , Ocludina/metabolismo , Transdução de Sinais , Junções Íntimas/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem , Proteína da Zônula de Oclusão-1/metabolismo
4.
Front Behav Neurosci ; 14: 611780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551765

RESUMO

Cannabinoid receptors 1 and 2 (CB1 and CB2, respectively) play an important role in maintaining the integrity of the blood-brain barrier (BBB). On the other hand, BBB dysfunction is a common feature in drug-resistant epilepsy. The focus of the present study was to characterize protein expression levels and Gαi/o protein-induced activation by CB1 and CB2 receptors in the microvascular endothelial cells (MECs) isolated from the brain of patients with drug-resistant mesial temporal lobe epilepsy (DR-MTLE). MECs were isolated from the hippocampus and temporal neocortex of 12 patients with DR-MTLE and 12 non-epileptic autopsies. Immunofluorescence experiments were carried out to determine the localization of CB1 and CB2 receptors in the different cell elements of MECs. Protein expression levels of CB1 and CB2 receptors were determined by Western blot experiments. [35S]-GTPγS binding assay was used to evaluate the Gαi/o protein activation induced by specific agonists. Immunofluorescent double-labeling showed that CB1 and CB2 receptors colocalize with tight junction proteins (claudin-5, occludin, and zonula occludens-1), glial fibrillary acidic protein and platelet-derived growth factor receptor-ß. These results support that CB1 and CB2 receptors are expressed in the human isolated microvessels fragments consisting of MECs, astrocyte end feet, and pericytes. The hippocampal microvasculature of patients with DR-MTLE presented lower protein expression of CB1 and CB2 receptors (66 and 43%, respectively; p < 0.001). However, its Gαi/o protein activation was with high efficiency (CB1, 251%, p < 0.0008; CB2, 255%, p < 0.0001). Microvasculature of temporal neocortex presented protein overexpression of CB1 and CB2 receptors (35 and 41%, respectively; p < 0.01). Their coupled Gαi/o protein activation was with higher efficiency for CB1 receptors (103%, p < 0.006), but lower potency (p < 0.004) for CB2 receptors. The present study revealed opposite changes in the protein expression of CB1 and CB2 receptors when hippocampus (diminished expression of CB1 and CB2) and temporal neocortex (increased expression of CB1 and CB2) were compared. However, the exposure to specific CB1 and CB2 agonists results in high efficiency for activation of coupled Gαi/o proteins in the brain microvasculature of patients with DR-MTLE. CB1 and CB2 receptors with high efficiency could represent a therapeutic target to maintain the integrity of the BBB in patients with DR-MTLE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...