Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 49 Suppl 1: 140-150, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29588196

RESUMO

Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20×20×5mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54g/L and 1.36g/Lh, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.


Assuntos
Etanol/metabolismo , Microbiologia Industrial/métodos , Saccharomyces cerevisiae/metabolismo , Sorghum/microbiologia , Alginatos/química , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Etanol/análise , Fermentação , Saccharomyces cerevisiae/química , Sorghum/química , Sorghum/metabolismo
2.
Braz. j. microbiol ; Braz. j. microbiol;49(supl.1): 140-150, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974343

RESUMO

Abstract Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20 × 20 × 5 mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54 g/L and 1.36 g/L h, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360 h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.


Assuntos
Saccharomyces cerevisiae/metabolismo , Microbiologia Industrial/métodos , Sorghum/microbiologia , Etanol/metabolismo , Saccharomyces cerevisiae/química , Células Imobilizadas/metabolismo , Células Imobilizadas/química , Sorghum/metabolismo , Sorghum/química , Etanol/análise , Alginatos/química , Fermentação
3.
Braz. J. Microbiol. ; 49(supl 1): 140-150, 2018. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-19102

RESUMO

Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20 × 20 × 5 mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54 g/L and 1.36 g/L h, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360 h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.(AU)

4.
Braz. j. microbiol ; Braz. j. microbiol;492018.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469652

RESUMO

Abstract Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20 × 20 × 5 mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54 g/L and 1.36 g/L h, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360 h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.

5.
Electron. j. biotechnol ; Electron. j. biotechnol;14(1): 4-5, Jan. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-591922

RESUMO

Batch ethanol fermentations from sweet sorghum juice by Saccharomyces cerevisiae NP 01 were carried out in a 500 ml air-locked Erlenmeyer flask under very high gravity (VHG) and static conditions. The maximum ethanol production efficiency was obtained when 9 g l-1 of yeast extract was supplemented to the juice. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) were 120.24 +/- 1.35 g l-1, 3.01 +/- 0.08 g l-1 h-1 and 0.49 +/- 0.01, respectively. Scale up ethanol fermentation in a 5-litre bioreactor at an agitation rate of 100 rev min-1 revealed that P, Qp and Yp/s were 139.51 +/- 0.11 g l-1, 3.49 +/- 0.00 g l-1 h-1 and 0.49 +/- 0.01, respectively, whereas lower P (119.53 +/- 0.20 g l-1) and Qp (2.13 +/- 0.01 g l-1 h-1) were obtained in a 50-litre bioreactor. In the repeated-batch fermentation in the 5-litre bioreactor with fill and drain volume of 50 percent of the working volume, lower P and Qp were observed in the subsequent batches. P in batch 2 to 8 ranged from 103.37 +/- 0.28 to 109.53 +/- 1.06 g l-1.


Assuntos
Etanol/metabolismo , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fermentação , Fermentação/fisiologia , Preparações de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA