Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 13(1): 125-37, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11158534

RESUMO

A recessive mutation of Arabidopsis designated sas1 (for sodium overaccumulation in shoot) that was mapped to the bottom of chromosome III resulted in a two- to sevenfold overaccumulation of Na(+) in shoots compared with wild-type plants. sas1 is a pleiotropic mutation that also caused severe growth reduction. The impact of NaCl stress on growth was similar for sas1 and wild-type plants; however, with regard to survival, sas1 plants displayed increased sensitivity to NaCl and LiCl treatments compared with wild-type plants. sas1 mutants overaccumulated Na(+) and its toxic structural analog Li(+), but not K(+), Mg(2)+, or Ca(2)+. Sodium accumulated preferentially over K(+) in a similar manner for sas1 and wild-type plants. Sodium overaccumulation occurred in all of the aerial organs of intact sas1 plants but not in roots. Sodium-treated leaf fragments or calli displayed similar Na(+) accumulation levels for sas1 and wild-type tissues. This suggested that the sas1 mutation impaired Na(+) long-distance transport from roots to shoots. The transpiration stream was similar in sas1 and wild-type plants, whereas the Na(+) concentration in the xylem sap of sas1 plants was 5.5-fold higher than that of wild-type plants. These results suggest that the sas1 mutation disrupts control of the radial transport of Na(+) from the soil solution to the xylem vessels.


Assuntos
Arabidopsis/metabolismo , Mutação , Raízes de Plantas/metabolismo , Sódio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Sequência de Bases , Primers do DNA , Transporte de Íons , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...