Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Einstein (Sao Paulo) ; 22: eAO0764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775605

RESUMO

OBJECTIVE: To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process. METHODS: Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100µg/mL of nanoparticle concentration. For the in vivo evaluation, nanoparticles were administered intraperitoneally at a dose of 10mg/kg dose in 10-week-old mice. Toxicity was assessed 24 hours and 7 days after administration via histopathological analysis of various tissues, as well as through renal, hepatic, and hematopoietic evaluations. RESULTS: Synthesized nanoparticles exhibited different hydrodynamic sizes depending on the medium: 51.27±1.62nm in water and 268.12±28.45nm (0 hour) in culture medium. They demonstrated a maximum absorbance at 520nm and a zeta potential of -8.419mV. Cellular viability exceeded 90%, with less than 3% early apoptosis, 6% late apoptosis, and 1% necrosis across all labeling conditions, indicating minimal cytotoxicity differences. Histopathological analysis highlighted the accumulation of nanoparticles in the mesentery; however, no lesions or visible agglomeration was observed in the remaining tissues. Renal, hepatic, and hematopoietic analyses showed no significant differences at any time point. CONCLUSION: Polyethylene glycol-coated gold nanoparticles exhibit extremely low toxicity and high biocompatibility, showing promise for future studies.


Assuntos
Ouro , Nanopartículas Metálicas , Polietilenoglicóis , Polietilenoglicóis/toxicidade , Polietilenoglicóis/química , Ouro/toxicidade , Ouro/química , Animais , Nanopartículas Metálicas/toxicidade , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Apoptose/efeitos dos fármacos , Humanos , Tamanho da Partícula , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Fatores de Tempo
2.
Brain Sci ; 14(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38672001

RESUMO

Dyslexia is a neurodevelopmental disorder that presents a deficit in accuracy and/or fluency while reading or spelling that is not expected given the level of cognitive functioning. Research indicates brain structural changes mainly in the left hemisphere, comprising arcuate fasciculus (AF) and corona radiata (CR). The purpose of this systematic review is to better understand the possible methods for analyzing Diffusion Tensor Imaging (DTI) data while accounting for the characteristics of dyslexia in the last decade of the literature. Among 124 articles screened from PubMed and Scopus, 49 met inclusion criteria, focusing on dyslexia without neurological or psychiatric comorbidities. Article selection involved paired evaluation, with a third reviewer resolving discrepancies. The selected articles were analyzed using two topics: (1) a demographic and cognitive assessment of the sample and (2) DTI acquisition and analysis. Predominantly, studies centered on English-speaking children with reading difficulties, with preserved non-verbal intelligence, attention, and memory, and deficits in reading tests, rapid automatic naming, and phonological awareness. Structural differences were found mainly in the left AF in all ages and in the bilateral superior longitudinal fasciculus for readers-children and adults. A better understanding of structural brain changes of dyslexia and neuroadaptations can be a guide for future interventions.

3.
Arq Neuropsiquiatr ; 82(6): 1-12, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565188

RESUMO

Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.


A radiologia tem uma série de características que a torna uma disciplina médica especialmente adequada à adoção precoce da inteligência artificial (IA), incluindo um fluxo de trabalho digital bem estabelecido, protocolos padronizados para armazenamento de imagens e inúmeras atividades interpretativas bem definidas. Tal adequação é corroborada pelos mais de 200 produtos radiológicos comerciais baseados em IA recentemente aprovados pelo Food and Drug Administration (FDA) para auxiliar os radiologistas em uma série de tarefas restritas de análise de imagens, como quantificação, triagem de fluxo de trabalho e aprimoramento da qualidade das imagens. Entretanto, para o aumento da eficácia e eficiência da IA, além de uma utilização clínica bem-sucedida dos produtos que utilizam essa tecnologia, os radiologistas devem estar atualizados com as aplicações em suas áreas específicas de atuação. Assim, neste artigo, pesquisamos na literatura existente aplicações baseadas em IA em neurorradiologia, mais especificamente em condições como doenças vasculares, epilepsia, condições desmielinizantes e neurodegenerativas. Também abordamos os principais algoritmos por trás de tais aplicações, discutimos alguns dos desafios na generalização no uso desses modelos e introduzimos as soluções comercialmente disponíveis mais relevantes adotadas na prática clínica. Se cautelosamente desenvolvidos, os algoritmos de IA têm o potencial de melhorar radicalmente a radiologia, aperfeiçoando a análise de imagens, aumentando o valor das técnicas de imagem quantitativas e mitigando erros de diagnóstico.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Algoritmos , Radiologia/métodos
4.
Pharmaceutics ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543205

RESUMO

Breast cancer (BC) presents a growing global concern, mainly for the female population of working age. Their pathophysiology shows challenges when attempting to ensure conventional treatment efficacy without adverse effects. This study aimed to evaluate the efficacy of magneto-hyperthermia (MHT) therapy associated with supplementation with omega-3 polyunsaturated fatty acid (w-3 PUFA) and engagement in physical training (PT) for the triple-negative BC (TNBC) model. First, we assessed the physicochemical properties of iron oxide nanoparticles (ION) in biological conditions, as well as their heating potential for MHT therapy. Then, a bioluminescence (BLI) evaluation of the best tumor growth conditions in the TNBC model (the quantity of implanted cells and time), as well as the efficacy of MHT therapy (5 consecutive days) associated with the previous administration of 8 weeks of w-3 PUFA and PT, was carried out. The results showed the good stability and potential of ION for MHT using 300 Gauss and 420 kHz. In the TNBC model, adequate tumor growth was observed after 14 days of 2 × 106 cells implantation by BLI. There was a delay in tumor growth in animals that received w-3 and PT and a significant decrease associated with MHT. This pioneering combination therapy approach (MHT, omega-3, and exercise) showed a positive effect on TNBC tumor reduction and demonstrated promise for pre-clinical and clinical studies in the future.

5.
Brain Sci ; 14(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391752

RESUMO

Individuals with Parkinson's disease (PD) and freezing of gait (FOG) have a loss of presynaptic inhibition (PSI) during anticipatory postural adjustments (APAs) for step initiation. The mesencephalic locomotor region (MLR) has connections to the reticulospinal tract that mediates inhibitory interneurons responsible for modulating PSI and APAs. Here, we hypothesized that MLR activity during step initiation would explain the loss of PSI during APAs for step initiation in FOG (freezers). Freezers (n = 34) were assessed in the ON-medication state. We assessed the beta of blood oxygenation level-dependent signal change of areas known to initiate and pace gait (e.g., MLR) during a functional magnetic resonance imaging protocol of an APA task. In addition, we assessed the PSI of the soleus muscle during APA for step initiation, and clinical (e.g., disease duration) and behavioral (e.g., FOG severity and APA amplitude for step initiation) variables. A linear multiple regression model showed that MLR activity (R2 = 0.32, p = 0.0006) and APA amplitude (R2 = 0.13, p = 0.0097) explained together 45% of the loss of PSI during step initiation in freezers. Decreased MLR activity during a simulated APA task is related to a higher loss of PSI during APA for step initiation. Deficits in central and spinal inhibitions during APA may be related to FOG pathophysiology.

6.
J Affect Disord ; 347: 591-600, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092282

RESUMO

BACKGROUND: Aerobic exercise (AE) combined with pharmacotherapy is known to reduce depressive symptoms; however, studies have not focused on long-term AE for volumetric changes of brain regions (amygdala, thalamus, and nucleus accumbens [NAcc]) linked to the control of affective responses and hopelessness in individuals with major depression (MD). In addition, AE with motor complexity (AEMC) would be more effective than AE in causing brain plasticity. We compared the effects of 24 weeks of AE and AEMC combined with pharmacotherapy on clinical and volumetric outcomes in individuals with MD. METHODS: Forty medicated individuals with MD were randomly assigned to nonexercising control (C), AE, and AEMC groups. The training groups exercised for 60 min, twice a week for 24 weeks. Clinical and volumetric outcomes were assessed before and after the 24 weeks. Effect size (ES) and confidence interval (CI) were calculated for within-group and between-groups changes. RESULTS: AE and AEMC reduced hopelessness (ES = -0.73 and ES = -0.62, respectively) and increased affective responses (ES = 1.24 and ES = 1.56, respectively). Only AE increased amygdala (ES = 0.27 left and ES = 0.34 right), thalamus (ES = 0.33 left and ES = 0.26 right) and left NAcc (ES = 0.54) volumes. AE was more effective than the C group in reducing hopelessness and causing brain plasticity. The changes in the right amygdala volume showed a strong trend in explaining 72 % of the changes in affective responses following AE (p = 0.06). LIMITATION: Lack of posttraining follow-up and small sample size. CONCLUSION: These preliminary data indicate that AE combined with pharmacotherapy can cause clinical improvement and brain plasticity in individuals with MD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Depressão , Projetos Piloto , Exercício Físico/fisiologia , Neuroimagem
7.
Einstein (Säo Paulo) ; 22: eAO0764, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557729

RESUMO

ABSTRACT Objective To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process. Methods Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100µg/mL of nanoparticle concentration. For the in vivo evaluation, nanoparticles were administered intraperitoneally at a dose of 10mg/kg dose in 10-week-old mice. Toxicity was assessed 24 hours and 7 days after administration via histopathological analysis of various tissues, as well as through renal, hepatic, and hematopoietic evaluations. Results Synthesized nanoparticles exhibited different hydrodynamic sizes depending on the medium: 51.27±1.62nm in water and 268.12±28.45nm (0 hour) in culture medium. They demonstrated a maximum absorbance at 520nm and a zeta potential of -8.419mV. Cellular viability exceeded 90%, with less than 3% early apoptosis, 6% late apoptosis, and 1% necrosis across all labeling conditions, indicating minimal cytotoxicity differences. Histopathological analysis highlighted the accumulation of nanoparticles in the mesentery; however, no lesions or visible agglomeration was observed in the remaining tissues. Renal, hepatic, and hematopoietic analyses showed no significant differences at any time point. Conclusion Polyethylene glycol-coated gold nanoparticles exhibit extremely low toxicity and high biocompatibility, showing promise for future studies.

8.
World J Stem Cells ; 15(6): 632-653, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37424947

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs) show great ability to differentiate into any tissue, making them attractive candidates for pathophysiological investigations. The rise of organ-on-a-chip technology in the past century has introduced a novel way to make in vitro cell cultures that more closely resemble their in vivo environments, both structural and functionally. The literature still lacks consensus on the best conditions to mimic the blood-brain barrier (BBB) for drug screening and other personalized therapies. The development of models based on BBB-on-a-chip using iPSCs is promising and is a potential alternative to the use of animals in research. AIM: To analyze the literature for BBB models on-a-chip involving iPSCs, describe the microdevices, the BBB in vitro construction, and applications. METHODS: We searched for original articles indexed in PubMed and Scopus that used iPSCs to mimic the BBB and its microenvironment in microfluidic devices. Thirty articles were identified, wherein only 14 articles were finally selected according to the inclusion and exclusion criteria. Data compiled from the selected articles were organized into four topics: (1) Microfluidic devices design and fabrication; (2) characteristics of the iPSCs used in the BBB model and their differentiation conditions; (3) BBB-on-a-chip reconstruction process; and (4) applications of BBB microfluidic three-dimensional models using iPSCs. RESULTS: This study showed that BBB models with iPSCs in microdevices are quite novel in scientific research. Important technological advances in this area regarding the use of commercial BBB-on-a-chip were identified in the most recent articles by different research groups. Conventional polydimethylsiloxane was the most used material to fabricate in-house chips (57%), whereas few studies (14.3%) adopted polymethylmethacrylate. Half the models were constructed using a porous membrane made of diverse materials to separate the channels. iPSC sources were divergent among the studies, but the main line used was IMR90-C4 from human fetal lung fibroblast (41.2%). The cells were differentiated through diverse and complex processes either to endothelial or neural cells, wherein only one study promoted differentiation inside the chip. The construction process of the BBB-on-a-chip involved previous coating mostly with fibronectin/collagen IV (39.3%), followed by cell seeding in single cultures (36%) or co-cultures (64%) under controlled conditions, aimed at developing an in vitro BBB that mimics the human BBB for future applications. CONCLUSION: This review evidenced technological advances in the construction of BBB models using iPSCs. Nonetheless, a definitive BBB-on-a-chip has not yet been achieved, hindering the applicability of the models.

9.
Front Neurosci ; 17: 1185768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483358

RESUMO

Background: Hypertension is associated with working memory (WM) impairment. However, the benefits of Cogmed WM training for the hypertensive population are unknown. Therefore, we aimed to evaluate Cogmed's effects on the WM performance of hypertensive individuals with executive function (EF) impairment. Methods: We included 40 hypertensive patients (aged 40-70 years, 68% female) with EF impairment. They were randomized in a 1:1 ratio to receive 10 weeks of adaptive Cogmed training or a non-adaptive control training based on online games. The primary outcome was the WM performance. The secondary outcomes were verbal memory, visuospatial ability, executive function, global cognition, and the neuronal activity measured using functional magnetic resonance imaging (fMRI) under two WM task conditions: low (memorization of 4 spatial locations) and high (memorization of 6 spatial locations). An intention-to-treat (ITT) and per-protocol (PP) analysis were performed. Results: Cogmed did not show a significant effect on WM or any other cognitive outcome post-training. However, under the WM-low load and WM-high load conditions of the fMRI, respectively, the Cogmed group had an activation decrease in the right superior parietal lobe (ITT and PP analyses) and left inferior frontal lobe (PP analysis) in comparison to the control group. Conclusion: The Cogmed showed no effects on the WM performance of hypertensive individuals with EF impairment. However, activation decreases were observed in frontoparietal areas related to the WM network, suggesting a more efficient neuronal activity after training.

10.
Nutrients ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986040

RESUMO

In order to understand how omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplements affect breast cancer prevention and treatment, a systematic review of articles published in the last 5 years in two databases was performed. Of the 679 articles identified, only 27 were included and examined based on five topics, taking into account: the induction type of the breast cancer used in animal models; the characteristics of the induction model by cell transplantation; the experimental design of the ω-3 supplementation-combined or not with a treatment antitumor drug; the fatty acids (FAs) composition used; the analysis of the studies' outcomes. There are diverse and well-established animal models of breast cancer in the literature, with very relevant histological and molecular similarities depending on the specific objective of the study, such as whether the method of tumor induction was transgenic, by cell transplantation, or by oncogenic drugs. The analyses of outcomes were mainly focused on monitoring tumor growth, body/tumor weight, and molecular, genetic, or histological analyses, and few studies evaluated latency, survival, or metastases. The best results occurred when supplementation with ω-3 PUFA was associated with antitumor drugs, especially in the analysis of metastases and volume/weight of tumors or when the supplementation was started early and maintained for a long time. However, the beneficial effect of ω-3 PUFA supplementation when not associated with an antitumor agent remains unclear.


Assuntos
Antineoplásicos , Ácidos Graxos Ômega-3 , Neoplasias , Animais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos , Suplementos Nutricionais , Neoplasias/tratamento farmacológico
11.
Pharmaceutics ; 15(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36986690

RESUMO

Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.

12.
Int J Obes (Lond) ; 47(3): 165-174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585494

RESUMO

BACKGROUND: Obesity is a disease that may involve disrupted connectivity of brain networks. Bariatric surgery is an effective treatment for obesity, and the positive effects on obesity-related conditions may be enhanced by exercise. Herein, we aimed to investigate the possible synergistic effects of Roux-en-Y Gastric Bypass (RYGB) and exercise training on brain functional networks. METHODS: Thirty women eligible for bariatric surgery were randomly assigned to a Roux-en-Y gastric bypass (RYGB: n = 15, age = 41.0 ± 7.3 years) or RYGB plus Exercise Training (RYGB + ET: n = 15, age = 41.9 ± 7.2 years). Clinical, laboratory, and brain functional connectivity parameters were assessed at baseline, and 3 (POST3) and 9 months (POST9) after surgery. The 6-month, three-times-a-week, exercise intervention (resistance plus aerobic exercise) was initiated 3 months post-surgery (for RYGB + ET). RESULTS: Exercise superimposed on bariatric surgery (RYGB + ET) increased connectivity between hypothalamus and sensorial regions (seed-to-voxel analyses of hypothalamic connectivity), and decreased default mode network (DMN) and posterior salience (pSAL) network connectivity (ROI-to-ROI analyses of brain networks connectivity) when compared to RYGB alone (all p-FDR < 0.05). Increases in basal ganglia (BG) network connectivity were only observed in the exercised training group (within-group analyses). CONCLUSION: Exercise training is an important component in the management of post-bariatric patients and may improve the hypothalamic connectivity and brain functional networks that are involved in controlling food intake. TRIAL REGISTRATION: Clinicaltrial.gov: NCT02441361.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Obesidade Mórbida , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Exercício Físico , Obesidade/cirurgia , Encéfalo , Hipotálamo
13.
Nutr Neurosci ; 26(9): 901-912, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35943074

RESUMO

Red wine (RW) consumption has been proposed to have a potential health benefit. However, the effect of RW consumption on the brain is not entirely known, mainly when associated with aging. Regular red wine consumers (n = 30) and abstainers (ABST; n = 27) without cognitive impairment were evaluated for brain structural characteristics (Fazekas score and voxel-based morphometry) and for functional adaptations assessed by fMRI (using the Word Tasks Color Stroop (WCST) and Two-Back (TBT)), as well as by neuropsychological tests in different domains. There were no significant differences regarding brain morphological features. RW consumers showed greater activation in the thalamus during WCST and in paracingulate/anterior cingulate cortices, left superior frontal gyrus and frontal pole during TBT. ABST required higher activation of different cortical areas in the left parietal lobe during WCST. Age and intelligence quotient influenced those activations. In Stroop and trail-making neuropsychological tests, RW consumers performed slightly better than ABST. This study should be viewed as hypothesis-generating rather than conclusive.HighlightsWhite matter hyperintensities and gray matter volume did not differ between the RW and ABST groups.RW consumers could depend more on right thalamus during WSCT due to its role in visual integration.ABST could depend more on left parietal lobe during WSCT due to its role in sensory and phonological encoding.RW consumers with inferior cognitive abilities could depend more on letter recognition to solve a TBT correctly.Younger abstainers could depend more on different areas involved in integrating cognitive processes and attention regulation to solve a TBT correctly.


Assuntos
Imageamento por Ressonância Magnética , Vinho , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Substância Cinzenta , Testes Neuropsicológicos
14.
Hum Mov Sci ; 86: 103018, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334382

RESUMO

Individuals with Parkinson's disease (PD) and freezing of gait (FOG) have difficulty initiating and maintaining a healthy gait pattern; however, the relationship among FOG severity, gait initiation, and gait automaticity, in addition to the neural substrate of this relationship has not been investigated. This study investigated the association among FOG severity during turning (FOG-ratio), gait initiation (anticipatory postural adjustment [APA]), and gait automaticity (dual-task cost [DTC]), and the neural substrates of these associations. Thirty-four individuals with FOG of PD were assessed in the ON-medication state. FOG-ratio during a turning test, gait automaticity using DTC on stride length and gait speed, and APA during an event-related functional magnetic resonance imaging protocol to assess brain activity from the regions of interest (e.g., dorsolateral prefrontal cortex [DLPFC] and mesencephalic locomotor region [MLR]) were assessed in separated days. Results showed that FOG-ratio, APA amplitude, and DTC on stride length are negatively associated among them (P < 0.05). APA amplitude and DTC on stride length explained 59% of the FOG-ratio variance (P < 0.05). Although the activity of the right DLPFC and right MLR explained 55% of the FOG-ratio variance (P < 0.05) and 30% of the DTC on stride length variance (P ≤ 0.05), only the activity of the right MLR explained 23% of the APA amplitude (P < 0.05). FOG severity during turning, APA amplitude, and stride length automaticity are associated among them and share a similar locomotor substrate, as the MLR activity was a common brain region in explaining the variance of these variables.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Marcha , Encéfalo/diagnóstico por imagem , Locomoção
15.
Cells ; 11(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36231063

RESUMO

This systematic review aimed to analyze the development and functionality of microfluidic concentration gradient generators (CGGs) for toxicological evaluation of different biological organisms. We searched articles using the keywords: concentration gradient generator, toxicity, and microfluidic device. Only 33 of the 352 articles found were included and examined regarding the fabrication of the microdevices, the characteristics of the CGG, the biological model, and the desired results. The main fabrication method was soft lithography, using polydimethylsiloxane (PDMS) material (91%) and SU-8 as the mold (58.3%). New technologies were applied to minimize shear and bubble problems, reduce costs, and accelerate prototyping. The Christmas tree CGG design and its variations were the most reported in the studies, as well as the convective method of generation (61%). Biological models included bacteria and nematodes for antibiotic screening, microalgae for pollutant toxicity, tumor and normal cells for, primarily, chemotherapy screening, and Zebrafish embryos for drug and metal developmental toxicity. The toxic effects of each concentration generated were evaluated mostly with imaging and microscopy techniques. This study showed an advantage of CGGs over other techniques and their applicability for several biological models. Even with soft lithography, PDMS, and Christmas tree being more popular in their respective categories, current studies aim to apply new technologies and intricate architectures to improve testing effectiveness and reduce common microfluidics problems, allowing for high applicability of toxicity tests in different medical and environmental models.


Assuntos
Poluentes Ambientais , Dispositivos Lab-On-A-Chip , Animais , Antibacterianos , Dimetilpolisiloxanos , Peixe-Zebra
16.
World J Stem Cells ; 14(8): 658-679, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36157912

RESUMO

BACKGROUND: Bone marrow transplantation (BMT) can be applied to both hematopoietic and nonhematopoietic diseases; nonetheless, it still comes with a number of challenges and limitations that contribute to treatment failure. Bearing this in mind, a possible way to increase the success rate of BMT would be cotransplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) to improve the bone marrow niche and secrete molecules that enhance the hematopoietic engraftment. AIM: To analyze HSC and MSC characteristics and their interactions through cotransplantation in murine models. METHODS: We searched for original articles indexed in PubMed and Scopus during the last decade that used HSC and MSC cotransplantation and in vivo BMT in animal models while evaluating cell engraftment. We excluded in vitro studies or studies that involved graft versus host disease or other hematological diseases and publications in languages other than English. In PubMed, we initially identified 555 articles and after selection, only 12 were chosen. In Scopus, 2010 were identified, and six were left after the screening and eligibility process. RESULTS: Of the 2565 articles found in the databases, only 18 original studies met the eligibility criteria. HSC distribution by source showed similar ratios, with human umbilical cord blood or animal bone marrow being administered mainly with a dose of 1 × 107 cells by intravenous or intrabone routes. However, MSCs had a high prevalence of human donors with a variety of sources (umbilical cord blood, bone marrow, tonsil, adipose tissue or fetal lung), using a lower dose, mainly 106 cells and ranging 104 to 1.5 × 107 cells, utilizing the same routes. MSCs were characterized prior to administration in almost every experiment. The recipient used was mostly immunodeficient mice submitted to low-dose irradiation or chemotherapy. The main technique of engraftment for HSC and MSC cotransplantation evaluation was chimerism, followed by hematopoietic reconstitution and survival analysis. Besides the engraftment, homing and cellularity were also evaluated in some studies. CONCLUSION: The preclinical findings validate the potential of MSCs to enable HSC engraftment in vivo in both xenogeneic and allogeneic hematopoietic cell transplantation animal models, in the absence of toxicity.

17.
Pharmaceutics ; 14(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35745821

RESUMO

Considering there are several difficulties and limitations in labeling stem cells using multifunctional nanoparticles (MFNP), the purpose of this study was to determine the optimal conditions for labeling human bone marrow mesenchymal stem cells (hBM-MSC), aiming to monitor these cells in vivo. Thus, this study provides information on hBM-MSC direct labeling using multimodal nanoparticles in terms of concentration, magnetic field, and period of incubation while maintaining these cells' viability and the homing ability for in vivo experiments. The cell labeling process was assessed using 10, 30, and 50 µg Fe/mL of MFNP, with periods of incubation ranging from 4 to 24 h, with or without a magnetic field, using optical microscopy, near-infrared fluorescence (NIRF), and inductively coupled plasma mass spectrometry (ICP-MS). After the determination of optimal labeling conditions, these cells were applied in vivo 24 h after stroke induction, intending to evaluate cell homing and improve NIRF signal detection. In the presence of a magnetic field and utilizing the maximal concentration of MFNP during cell labeling, the iron load assessed by NIRF and ICP-MS was four times higher than what was achieved before. In addition, considering cell viability higher than 98%, the recommended incubation time was 9 h, which corresponded to a 25.4 pg Fe/cell iron load (86% of the iron load internalized in 24 h). The optimization of cellular labeling for application in the in vivo study promoted an increase in the NIRF signal by 215% at 1 h and 201% at 7 h due to the use of a magnetized field during the cellular labeling process. In the case of BLI, the signal does not depend on cell labeling showing no significant differences between unlabeled or labeled cells (with or without a magnetic field). Therefore, the in vitro cellular optimized labeling process using magnetic fields resulted in a shorter period of incubation with efficient iron load internalization using higher MFNP concentration (50 µgFe/mL), leading to significant improvement in cell detection by NIRF technique without compromising cellular viability in the stroke model.

18.
Cancers (Basel) ; 14(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205617

RESUMO

This systematic review aimed to verify the use of microfluidic devices in the process of implementing and evaluating the effectiveness of therapeutic approaches in glioblastoma on-a-chip, providing a broad view of advances to date in the use of this technology and their perspectives. We searched studies with the variations of the keywords "Glioblastoma", "microfluidic devices", "organ-on-a-chip" and "therapy" of the last ten years in PubMed and Scopus databases. Of 446 articles identified, only 22 articles were selected for analysis according to the inclusion and exclusion criteria. The microfluidic devices were mainly produced by soft lithography technology, using the PDMS material (72%). In the microenvironment, the main extracellular matrix used was collagen type I. Most studies used U87-MG glioblastoma cells from humans and 31.8% were co-cultivated with HUVEC, hCMEC/D3, and astrocytes. Chemotherapy was the majority of therapeutic approaches, assessing mainly the cellular viability and proliferation. Furthermore, some alternative therapies were reported in a few studies (22.6%). This study identified a diversity of glioblastoma on-a-chip to assess therapeutic approaches, often using intermediate levels of complexity. The most advanced level implemented the intersection between different biological systems (liver-brain or intestine-liver-brain), BBB model, allowing in vitro studies with greater human genetic similarity, reproducibility, and low cost, in a highly customizable platform.

19.
Cells ; 11(3)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35159294

RESUMO

The goal of this study is to see how combining physical activity with cell treatment impacts functional recovery in a stroke model. Molecular imaging and multimodal nanoparticles assisted in cell tracking and longitudinal monitoring (MNP). The viability of mesenchymal stem cell (MSC) was determined using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and bioluminescent image (BLI) after lentiviral transduction and MNP labeling. At random, the animals were divided into 5 groups (control-G1, and experimental G2-G5). The photothrombotic stroke induction was confirmed by local blood perfusion reduction and Triphenyltetrazolium chloride (TTC), and MSC in the G3 and G5 groups were implanted after 24 h, with BLI and near-infrared fluorescence image (NIRF) tracking these cells at 28 h, 2, 7, 14, and 28 days. During a 28-day period, the G5 also conducted physical training, whereas the G4 simply did the training. At 0, 7, 14, and 28 days, the animals were functionally tested using a cylinder test and a spontaneous motor activity test. MNP internalization in MSC was confirmed using brightfield and fluorescence microscopy. In relation to G1 group, only 3% of cell viability reduced. The G2-G5 groups showed more than 69% of blood perfusion reduction. The G5 group performed better over time, with a progressive recovery of symmetry and an increase of fast vertical movements. Up to 7 days, BLI and NIRF followed MSC at the damaged site, demonstrating a signal rise that could be connected to cell proliferation at the injury site during the acute phase of stroke. Local MSC therapy mixed with physical activity resulted in better results in alleviating motor dysfunction, particularly during the acute period. When it comes to neurorehabilitation, this alternative therapy could be a suitable fit.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Terapia Baseada em Transplante de Células e Tecidos , Exercício Físico , Transplante de Células-Tronco Mesenquimais/métodos , Acidente Vascular Cerebral/terapia
20.
Brain Behav ; 12(3): e2490, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35103410

RESUMO

BACKGROUND: Diffuse axonal injury (DAI) is a frequent mechanism of traumatic brain injury (TBI) that triggers a sequence of parenchymal changes that progresses from focal axonal shear injuries up to inflammatory response and delayed axonal disconnection. OBJECTIVE: The main purpose of this study is to evaluate changes in the axonal/myelinic content and the brain volume up to 12 months after TBI and to correlate these changes with neuropsychological results. METHODS: Patients with DAI (n = 25) were scanned at three time points after trauma (2, 6, and 12 months), and the total brain volume (TBV), gray matter volume, and white matter volume (WMV) were calculated in each time point. The magnetization transfer ratio (MTR) for the total brain (TB MTR), gray matter (GM MTR), and white matter (WM MTR) was also quantified. In addition, Hopkins verbal learning test (HVLT), Trail Making Test (TMT), and Rey-Osterrieth Complex Figure test were performed at 6 and 12 months after the trauma. RESULTS: There was a significant reduction in the mean TBV, WMV, TB MTR, GM MTR, and WM MTR between time points 1 and 3 (p < .05). There was also a significant difference in HVLT-immediate, TMT-A, and TMT-B scores between time points 2 and 3. The MTR decline correlated more with the cognitive dysfunction than the volume reduction. CONCLUSION: A progressive axonal/myelinic rarefaction and volume loss were characterized, especially in the white matter (WM) up to 1 year after the trauma. Despite that, specific neuropsychological tests revealed that patients' episodic verbal memory, attention, and executive function improved during the study. The current findings may be valuable in developing long-term TBI rehabilitation management programs.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Axonal Difusa , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Cognição , Lesão Axonal Difusa/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...