Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 7(12): 4152-4162, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28649328

RESUMO

To achieve national population targets for migratory birds, landscape-level conservation approaches are increasingly encouraged. However, knowledge of the mechanisms that drive spatiotemporal patterns in population dynamics are needed to inform scale-variant policy development. Using hierarchical Bayesian models and variable selection, we determined by which mechanism(s), and to what extent, changes in quantity and quality of surrogate grassland habitats contributed to regional variation in population trends of an obligatory grassland bird, Bobolink (Dolichonyx oryzivorous). We used North American Breeding Bird Survey data to develop spatially explicit models of regional population trends over 25 years across 35 agricultural census divisions in Ontario, Canada. We measured the strength of evidence for effects of land-use change on population trends over the entire study period and over five subperiods. Over the entire study period, one region (Perth) displayed strong evidence of population decline (95% CI is entirely below 0); four regions displayed strong evidence of population increase (Bruce, Simcoe, Peterborough, and Northumberland). Population trends shifted spatially among subperiods, with more extreme declines later in time (1986-1990: 28% of 35 census divisions, 1991-1995: 46%, 1996-2000: 40%, 2001-2005: 66%, 2006-2010: 82%). Important predictors of spatial patterns in Bobolink population trends over the entire study period were human development and fragmentation. However, factors inferred to drive patterns in population trends were not consistent over space and time. This result underscores that effective threat identification (both spatially and temporally) and implementation of flexible, regionally tailored policies will be critical to realize efficient conservation of Bobolink and similar at-risk species.

2.
Ecol Evol ; 6(19): 7004-7014, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725377

RESUMO

Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.

3.
Ecol Appl ; 24(1): 121-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24640539

RESUMO

Understanding the effects of landscape change and environmental variability on ecological processes is important for evaluating resource management policies, such as the emulation of natural forest disturbances. We analyzed time series of detection/nondetection data using hierarchical models in a Bayesian multi-model inference framework to decompose the dynamics of species distributions into responses to environmental variability, spatial variation in habitat conditions, and population dynamics and interspecific interactions, while correcting for observation errors and variation in sampling regimes. We modeled distribution dynamics of 14 waterbird species (broadly defined, including wetland and riparian species) using data from two different breeding bird surveys collected in the Boreal Shield ecozone within Ontario, Canada. Temporal variation in species occupancy (2000-2006) was primarily driven by climatic variability. Only two species showed evidence of consistent temporal trends in distribution: Ring-necked Duck (Aythya collaris) decreased, and Red-winged Blackbird (Agelaius phoeniceus) increased. The models had good predictive ability on independent data over time (1997-1999). Spatial variation in species occupancy was strongly related to the distribution of specific land cover types and habitat disturbance: Fire and forest harvesting influenced occupancy more than did roads, settlements, or mines. Bioclimatic and habitat heterogeneity indices and geographic coordinates exerted negligible influence on most species distributions. Estimated habitat suitability indices had good predictive ability on spatially independent data (Hudson Bay Lowlands ecozone). Additionally, we detected effects of interspecific interactions. Species responses to fire and forest harvesting were similar for 13 of 14 species; thus, forest-harvesting practices in Ontario generally appeared to emulate the effects of fire for waterbirds over timescales of 10-20 years. Extrapolating to all 84 waterbird species breeding on the Ontario Boreal Shield, however, suggested that up to 30 species may instead have altered (short-term) distribution dynamics due to forestry practices. Hence, natural disturbances are critical components of the ecology of the boreal forest and forest practices which aim to approximate them may succeed in allowing the maintenance of the associated species, but improved monitoring and modeling of large-scale boreal forest bird distribution dynamics will be necessary to resolve existing uncertainties, especially on less-common species.


Assuntos
Patos/fisiologia , Incêndios , Modelos Biológicos , Passeriformes/fisiologia , Árvores , Animais , Canadá , Demografia , Humanos , Modelos Estatísticos , Especificidade da Espécie , Fatores de Tempo
5.
J Anim Ecol ; 77(5): 869-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18631261

RESUMO

1. Geographic gradients in population dynamics may occur because of spatial variation in resources that affect the deterministic components of the dynamics (i.e. carrying capacity, the specific growth rate at small densities or the strength of density regulation) or because of spatial variation in the effects of environmental stochasticity. To evaluate these, we used a hierarchical Bayesian approach to estimate parameters characterizing deterministic components and stochastic influences on population dynamics of eight species of ducks (mallard, northern pintail, blue-winged teal, gadwall, northern shoveler, American wigeon, canvasback and redhead (Anas platyrhynchos, A. acuta, A. discors, A. strepera, A. clypeata, A. americana, Aythya valisineria and Ay. americana, respectively) breeding in the North American prairies, and then tested whether these parameters varied latitudinally. 2. We also examined the influence of temporal variation in the availability of wetlands, spring temperature and winter precipitation on population dynamics to determine whether geographical gradients in population dynamics were related to large-scale variation in environmental effects. Population variability, as measured by the variance of the population fluctuations around the carrying capacity K, decreased with latitude for all species except canvasback. This decrease in population variability was caused by a combination of latitudinal gradients in the strength of density dependence, carrying capacity and process variance, for which details varied by species. 3. The effects of environmental covariates on population dynamics also varied latitudinally, particularly for mallard, northern pintail and northern shoveler. However, the proportion of the process variance explained by environmental covariates, with the exception of mallard, tended to be small. 4. Thus, geographical gradients in population dynamics of prairie ducks resulted from latitudinal gradients in both deterministic and stochastic components, and were likely influenced by spatial differences in the distribution of wetland types and shapes, agricultural practices and dispersal processes. 5. These results suggest that future management of these species could be improved by implementing harvest models that account explicitly for spatial variation in density effects and environmental stochasticity on population abundance.


Assuntos
Patos/fisiologia , Animais , Demografia , América do Norte , Densidade Demográfica , Dinâmica Populacional , Análise de Regressão
6.
Oecologia ; 93(2): 242-250, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28313613

RESUMO

Tramer (1969) proposed that communities regulated by competition in benign, predictable environments were characterized by (i) damped variation in evenness relative to variation in richness over time, and (ii) high evenness relative to communities regulated by variation in the abundance and diversity of resources in rigorous, unpredictable environments. To test whether patterns of variation in diversity could reflect the mechanisms proposed to regulate community structure, temporal and spatial changes in the diversity, richness and evenness of breeding duck communities were examined along a gradient of variability in wetland conditions using thirty-three years of duck census and climate data from the Canadian prairie and boreal forest regions. Temporal variation in evenness was independent of wetland habitat variability. Changes in richness were more parsimoniously explained by the appearance of ducks displaced (by drought) from rigorous, variable, wetland habitats into relatively benign ones, than by competition in benign areas. Evenness was not significantly higher for duck guilds in more constant wetland habitats, as predicted. Variation in richness, evenness and diversity, predicted by Tramer, do not provide a basis for distinguishing the factors that regulate duck community structure.

7.
Oecologia ; 85(3): 419-423, 1991 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28312048

RESUMO

In response to Gaston and Lawton (1987), we evaluated the ability of four statistical procedures to detect density dependence. We used data from the same 16 populations as Gaston and Lawton (1987). In each population, density dependence had been previously established with techniques that use more extensive data. The major axis test (Slade 1977) was rarely (3 populations of 16) capable of detecting density dependence. The autocorrelation test (Bulmer 1975) detected density dependence in 5 of 16 species (14 of 59 tests overall). The randomization procedure (Pollard et al. 1987) detected density dependence in 7 of the 16 data sets (10 of 59 tests overall). The simulation procedure (Vickery and Nudds 1984) detected density dependence in 5 of the 16 data sets (11 of 59 tests overall). We suggest that not all annual census data taken from populations subject to density-dependent effects will actually show evidence of such effects. We conclude that Pollard et al. 's (1987) randomization procedure is the best test for detecting density dependence in sequential census data but it is not as powerful as more elaborate techniques (k-factor analysis, experimentation, etc.), nor is it meant to replace more extensive analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...