Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 10(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906315

RESUMO

"Children are not tiny adults" is an adage commonly used in pediatrics to emphasize the fact that children often have different physiological responses to sickness and trauma compared to adults. However, despite widespread acceptance of this concept, diagnostic blood testing is an excellent example of clinical care that is not yet customized to the needs of children, especially newborns. Cumulative blood loss resulting from clinical testing does not typically impact critically ill adult patients, but can quickly escalate in children, leading to iatrogenic anemia and related comorbidities. Moreover, the tests prioritized for rapid, near-patient testing in adults are not always the most clinically relevant tests for children or newborns. This report describes the development of a digital microfluidic testing platform and associated clinical assays purposely curated to address current shortcomings in pediatric laboratory testing by using microliter volumes (<50 µL) of samples. The automated platform consists of a small instrument and single-use cartridges, which contain all reagents necessary to prepare the sample and perform the assay. Electrowetting technology is used to precisely manipulate nanoliter-sized droplets of samples and reagents inside the cartridge. To date, we have automated three disparate types of assays (biochemical assays, immunoassays, and molecular assays) on the platform and have developed over two dozen unique tests, each with important clinical application to newborns and pediatric patients. Cell lysis, plasma preparation, magnetic bead washing, thermocycling, incubation, and many other essential functions were all performed on the cartridge without any user intervention. The resulting assays demonstrate performance comparable to standard clinical laboratory assays and are economical due to the reduced hands-on effort required for each assay and lower overall reagent consumption. These capabilities allow a wide range of assays to be run simultaneously on the same cartridge using significantly reduced sample volumes with results in minutes.

2.
Pract Lab Med ; 18: e00141, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31720353

RESUMO

BACKGROUND: Decreased galactocerebrosidase (GALC) enzyme activity is causative for Krabbe disease, a lysosomal storage disorder with devastating neurodegenerative consequences. Quantitative fluorimetric assays for GALC activity in isolated blood and skin cells have been described; however, no such assay has been described using dried blood spot (DBS) specimens. METHODS: GALC enzyme activity was measured quantitatively using fluorescence from a novel glycosidic substrate: carboxy derived from 6-hexadecanoylamino-4-methylumbelliferone. GALC activity was demonstrated on newborn DBS specimens, known Krabbe disease patient specimens, proficiency testing and quality control samples. RESULTS: We present data on characterization of the novel substrate and assay, including pH optimization and enzyme kinetics using a fluorimetric profile. Single and multi-day precision analyses revealed tight analytical measurements with %CV ranging from 5.2% to 14.1%. GALC enzyme activity was linear over the range of 0.31 - 12.04 µmol/l/h with a limit of detection of 0.066 µmol/l/h. Our results with this assay show a clear discrimination between GALC activities in samples from Krabbe disease patients versus presumed normal newborn samples. CONCLUSIONS: A fluorimetric assay for GALC enzyme activity measurement on dried blood spot specimens is feasible. Improvements to the assay including novel substrate design, increased substrate concentration and removal of sodium chloride maximize the specificity of the assay and minimize interference from ß-galactosidase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...