Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(1): e2200147, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35639567

RESUMO

Under optimized synthesis conditions, for the first time, polyisobutylene-based polyurethane (PIB-PU) is prepared with 70% PIB soft segment (i.e., a bioinert and calcification-resistant PU) with Mn > 100 000 Da, 32 MPa ultimate strength, and 630% elongation. The key parameters for this achievement are a) the precise stoichiometry of the polyurethane forming reaction, specifically the use of highly purified di-isocyanate (4,4'-methylene-bis (phenyl isocyanate), MDI), and b) the increased solid content of the synthesis solution to the limit beyond which increased viscosity prevents stirring. The shape of the stress-strain trace of PIB-PU indicates a two-step failure starting with a reversible elastic (Hookean) region up to ≈50% yield, followed by a slower linearly increasing high-modulus-deformation region suggesting the strengthening of PIB soft segments by entanglement/catenation, and the hard segments by progressively ordering urethane domains. This PIB-PU is a candidate for a fully synthetic bioprosthetic heart valve since preliminary studies show that PIB-PU has impressive fatigue life.


Assuntos
Polímeros , Poliuretanos , Polienos , Valvas Cardíacas
2.
Polymers (Basel) ; 11(1)2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30960025

RESUMO

The self-healing ability can be imparted to the polymers by different mechanisms. In this study, self-healing polydimethylsiloxane-graft-polyurethane (PDMS-g-PUR)/Vanadium pentoxide (V2O5) nanofiber supramolecular polymer composites based on a reversible hydrogen bonding mechanism are prepared. V2O5 nanofibers are synthesized via colloidal route and characterized by XRD, SEM, EDX, and TEM techniques. In order to prepare PDMS-g-PUR, linear aliphatic PUR having one ⁻COOH functional group (PUR-COOH) is synthesized and grafted onto aminopropyl functionalized PDMS by EDC/HCl coupling reaction. PUR-COOH and PDMS-g-PUR are characterized by ¹H NMR, FTIR. PDMS-g-PUR/V2O5 nanofiber composites are prepared and characterized by DSC/TGA, FTIR, and tensile tests. The self-healing ability of PDMS-graft-PUR and composites are determined by mechanical tests and optical microscope. Tensile strength data obtained from mechanical tests show that healing efficiencies of PDMS-g-PUR increase with healing time and reach 85.4 ± 1.2 % after waiting 120 min at 50 °C. The addition of V2O5 nanofibers enhances the mechanical properties and healing efficiency of the PDMS-g-PUR. An increase of healing efficiency and max tensile strength from 85.4 ± 1.2% to 95.3 ± 0.4% and 113.08 ± 5.24 kPa to 1443.40 ± 8.96 kPa is observed after the addition of 10 wt % V2O5 nanofiber into the polymer.

3.
Langmuir ; 33(11): 2900-2910, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28240027

RESUMO

Traditional hydrogels are commonly limited by poor mechanical properties and low oxygen permeability. Bimodal amphiphilic co-networks (ß-APCNs) are a new class of materials that can overcome these limitations by combining hydrophilic and hydrophobic polymer chains within a network of co-continuous morphology. Applications that can benefit from these improved properties include therapeutic contact lenses, enzymatic catalysis supports, and immunoisolation membranes. The continuous hydrophobic phase could potentially increase the adsorption of plasma proteins in blood-contacting medical applications and compromise in vivo material performance, so it is critical to understand the surface characteristics of ß-APCNs and adsorption of plasma proteins on ß-APCNs. From real-time spectroscopic visible (Vis) ellipsometry measurements, plasma protein adsorption on ß-APCNs is shown to be transport-limited. The adsorption of proteins on the ß-APCNs is a multistep process with adsorption to the hydrophilic surface initially, followed by diffusion into the material to the internal hydrophilic/hydrophobic interfaces. Increasing the cross-linking of the PDMS phase reduced the protein intake by limiting the transport of large proteins. Moreover, the internalization of the proteins is confirmed by the difference between the surface-adsorbed protein layer determined from XPS and bulk thickness change from Vis ellipsometry, which can differ up to 20-fold. Desorption kinetics depend on the adsorption history with rapid desorption for slow adsorption rates (i.e., slow-diffusing proteins within the network), whereas proteins with fast adsorption kinetics do not readily desorb. This behavior can be directly related to the ability of the protein to spread or reorient, which affects the binding energy required to bind to the internal hydrophobic interfaces.


Assuntos
Proteínas Sanguíneas/química , Polímeros/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Cinética , Propriedades de Superfície
4.
Adv Healthc Mater ; 6(3)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28177597

RESUMO

A novel approach to zero-order constant-rate drug delivery from contact lenses is presented. Quasi-Case II non-Fickian transport is achieved by nonuniform drug and diffusivity distributions within three-layer bimodal amphiphilic conetworks (ß-APCNs). The center layer is a highly oxygen permeable ß-APCN matrix, which contains the drug and exhibits a high drug diffusivity. The outer ß-APCN layers contain no-drug and are loaded with vitamin E, which slows diffusion. In contrast to single-layer neat-polymer and vitamin E-loaded films that display first-order "burst" kinetics, it is demonstrated experimentally and by modeling that the combined effect of nonuniform distribution of drug loading and diffusion constants within the three-layer lens maintains low local drug concentration at the lens-fluid interface and yields zero-order drug delivery. The release rates of topical antibiotics provide constant-rate therapeutic-level delivery with appropriate oxygen permeability for at least 30 h, at which time ≈25% of the drug was released.


Assuntos
Antibacterianos , Lentes de Contato Hidrofílicas , Sistemas de Liberação de Medicamentos/métodos , Modelos Químicos , Vitamina E , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Vitamina E/química , Vitamina E/farmacocinética , Vitamina E/farmacologia
5.
Des Monomers Polym ; 20(1): 514-523, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29491823

RESUMO

The synthesis of novel 1-(2-anthryl)-1-phenylethylene (APE) di-telechelic polyisobutylenes is described. Utilization of a difunctional cationic initiator and the in situ addition of the non-homopolymerizable APE lead to the formation of di-anthryl telechelic polyisobutylenes. Products were characterized by 1H NMR spectroscopy and Size Exclusion Chromatography. The polymers were UV irradiated at 365 and 254 nm and the reversible photocycloaddition of anthryl moieties was investigated. The chain extension of di-anthryl telechelic PIBs through photocoupling at 365 nm produced higher molecular weight products from low molecular weight precursors. The effect of precursor polymer concentration on the degree of chain extension was investigated, and intermolecular interactions leading to the formation of tetramers was observed. The photocoupled products were UV irradiated at 254 nm to induce the reversal of photocycloaddition of anthryl groups and to follow the consequent photoscission of polymers.

6.
Langmuir ; 32(14): 3445-51, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27004445

RESUMO

Amphiphilic polymer co-networks provide a unique route to integrating contrasting attributes of otherwise immiscible components within a bicontinuous percolating morphology and are anticipated to be valuable for applications such as biocatalysis, sensing of metabolites, and dual dialysis membranes. These co-networks are in essence chemically forced blends and have been shown to selectively phase-separate at surfaces during film formation. Here, we demonstrate that surface demixing at the air-film interface in solidifying polymer co-networks is not a unidirectional process; instead, a combination of kinetic and thermodynamic interactions leads to dynamic molecular rearrangement during solidification. Time-resolved gravimetry, low contact angles, and negative out-of-plane birefringence provided strong experimental evidence of the transitory trapping of thermodynamically unfavorable hydrophilic moieties at the air-film interface due to fast asymmetric solvent depletion. We also find that slow-drying hydrophobic elements progressively substitute hydrophilic domains at the surface as the surface energy is minimized. These findings are broadly applicable to common-solvent bicontinuous systems and open the door for process-controlled performance improvements in diverse applications. Similar observations could potentially be coupled with controlled polymerization rates to maximize the intermingling of bicontinuous phases at surfaces, thus generating true three-dimensional, bicontinuous, and undisturbed percolation pathways throughout the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...