Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Genet ; 68(2): 165-179, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35150303

RESUMO

Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13-Stn1-Ten1 complex, circumvents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity at replication forks advancing through challenging templates.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Mutação , Proteínas Serina-Treonina Quinases , Fase S/genética , Pontos de Checagem da Fase S do Ciclo Celular/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
2.
Curr Genet ; 68(2): 253-265, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35147742

RESUMO

Dbf4 is the cyclin-like subunit for the Dbf4-dependent protein kinase (DDK), required for activating the replicative helicase at DNA replication origin that fire during S phase. Dbf4 also functions as an adaptor, targeting the DDK to different groups of origins and substrates. Here we report a genome-wide analysis of origin firing in a budding yeast mutant, dbf4-zn, lacking the Zn2+ finger domain within the C-terminus of Dbf4. At one group of origins, which we call dromedaries, we observe an unanticipated DNA replication phenotype: accumulation of single-stranded DNA spanning ± 5kbp from the center of the origins. A similar accumulation of single-stranded DNA at origins occurs more globally in pri1-m4 mutants defective for the catalytic subunit of DNA primase and rad53 mutants defective for the S phase checkpoint following DNA replication stress. We propose the Dbf4 Zn2+ finger suppresses single-stranded gaps at replication forks emanating from dromedary origins. Certain origins may impose an elevated requirement for the DDK to fully initiate DNA synthesis following origin activation. Alternatively, dbf4-zn may be defective for stabilizing/restarting replication forks emanating from dromedary origins during replication stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas Serina-Treonina Quinases , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo
3.
Mol Biol Cell ; 30(22): 2771-2789, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509480

RESUMO

Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Replicação do DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Centrômero/metabolismo , Quinase do Ponto de Checagem 2/genética , Segregação de Cromossomos/efeitos dos fármacos , Estruturas Cromossômicas/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , DNA Fúngico/genética , Cinetocoros/metabolismo , Origem de Replicação , Fase S/fisiologia , Pontos de Checagem da Fase S do Ciclo Celular/genética , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Genetics ; 183(3): 793-810, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19752213

RESUMO

Telomere binding proteins protect chromosome ends from degradation and mask chromosome termini from checkpoint surveillance. In Saccharomyces cerevisiae, Cdc13 binds single-stranded G-rich telomere repeats, maintaining telomere integrity and length. Two additional proteins, Ten1 and Stn1, interact with Cdc13 but their contributions to telomere integrity are not well defined. Ten1 is known to prevent accumulation of aberrant single-stranded telomere DNA; whether this results from defective end protection or defective telomere replication is unclear. Here we report our analysis of a new group of ten1 temperature-sensitive (ts) mutants. At permissive temperatures, ten1-ts strains display greatly elongated telomeres. After shift to nonpermissive conditions, however, ten1-ts mutants accumulate extensive telomeric single-stranded DNA. Cdk1 activity is required to generate these single-stranded regions, and deleting the EXO1 nuclease partially suppresses ten1-ts growth defects. This is similar to cdc13-1 mutants, suggesting ten1-ts strains are defective for end protection. Moreover, like Cdc13, our analysis reveals Ten1 promotes de novo telomere addition. Interestingly, in ten1-ts strains at high temperatures, telomeric single-stranded DNA and Rad52-YFP repair foci are strongly induced despite Cdc13 remaining associated with telomeres, revealing Cdc13 telomere binding is not sufficient for end protection. Finally, unlike cdc13-1 mutants, ten1-ts strains display strong synthetic interactions with mutations in the POLalpha complex. These results emphasize that Cdc13 relies on Ten1 to execute its essential function, but leave open the possibility that Ten1 has a Cdc13-independent role in DNA replication.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Western Blotting , Divisão Celular , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Reparo do DNA , DNA de Cadeia Simples/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Fase G2 , Mutação , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Temperatura , Técnicas do Sistema de Duplo-Híbrido
5.
Proc Natl Acad Sci U S A ; 106(7): 2206-11, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19171895

RESUMO

Telomere integrity is maintained through end-protection proteins that block nuclease degradation and prevent telomeres from being recognized as DNA breaks. Although less well understood, end protection proteins may also play a role in facilitating telomere replication. Here, we show that overproduction (OP) of the yeast telomere capping protein Stn1 makes cells highly sensitive to the replication inhibitors hydroxyurea (HU) and methyl-methane sulfonate (MMS). Unexpectedly, this sensitivity corresponds with Stn1 OP blocking most, if not all, aspects of the S phase checkpoint. The checkpoint kinase Rad53 is phosphorylated with normal timing in Stn1 OP cells, indicating Stn1 does not interfere with signaling steps involved in activating the checkpoint. Part of the role of Stn1 in telomere integrity is mediated through the Pol12 subunit of DNA polymerase alpha (Pol alpha). We show that overproduced Stn1 generally associates with chromosomes in HU treated and untreated cells, and, remarkably, Stn1 chromosome binding and OP checkpoint defects are rescued in pol12 mutants. We propose Stn1 normally promotes Pol alpha activity at telomeres but can be recruited through Pol12 to nontelomeric sites when overproduced. During replication stress, the mislocalized Stn1 may inappropriately promote Pol alpha in a manner that interferes with Rad53 effector mechanisms controlling replication fork integrity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Quinase do Ponto de Checagem 2 , DNA Polimerase I/metabolismo , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Modelos Biológicos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Fase S , Saccharomyces cerevisiae/metabolismo , Fuso Acromático , Temperatura
6.
Cell Cycle ; 7(21): 3428-39, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18948753

RESUMO

Distinguishing telomeres from DNA double strand breaks is critical for genome stability. In S. cerevisiae, the Cdc13 single-strand telomere binding protein is critical for protecting chromosome ends. The C-rich telomere strand is lost at high temperatures in cdc13-1 strains, leading to activation of the DNA damage checkpoint and cell inviability. Through a screen performed to identify activities involved in telomere C-strand loss, we identified two new rad24 alleles. Rad24 is an alternate Rfc1 subunit, functioning to load the 9-1-1 checkpoint clamp. In each rad24 allele, a transposon inserted within the RAD24 coding region leads to expression of different carboxyl-terminal portions of Rad24, deleting or truncating the amino-terminus. We show that an intact Rad24 amino-terminus is necessary for its checkpoint function. Interestingly, the initial cdc13-1 rad24-2 strains grew at 36 degrees C, but the extent of suppression associated with rad24-2 weakened in serial backcrosses, and cdc13-1 segregants from these crosses showed a modest increase in temperature resistance. Moreover, while a RAD24 plasmid suppressed the checkpoint defect in the initial cdc13-1 rad24-2 strain, the temperature resistance was only partially suppressed. These data suggest that the TG(1-3) amplification observed in this strain contributes to the suppression phenotype. By recreating the rad24-2 allele in a strain with normal telomeres, we find that, relative to the rad24-delta allele, rad24-2 increases the frequency of obtaining cdc13-1 cells capable of growth at high temperatures. Our hypothesis is that the Rad24-2 truncation protein affects telomere structure or recombination in a manner distinct from rad24-delta.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Supressão Genética , Proteínas de Ligação a Telômeros/genética , Telômero/química , Alelos , Proteínas de Ciclo Celular/química , Proliferação de Células , Cruzamentos Genéticos , DNA de Cadeia Simples/metabolismo , Genes Supressores , Peptídeos e Proteínas de Sinalização Intracelular/química , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/citologia , Temperatura
7.
Genetics ; 177(3): 1459-74, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17947422

RESUMO

The function of telomeres is twofold: to facilitate complete chromosome replication and to protect chromosome ends against fusions and illegitimate recombination. In the budding yeast Saccharomyces cerevisiae, interactions among Cdc13p, Stn1p, and Ten1p are thought to be critical for promoting these processes. We have identified distinct Stn1p domains that mediate interaction with either Ten1p or Cdc13p, allowing analysis of whether the interaction between Cdc13p and Stn1p is indeed essential for telomere capping or length regulation. Consistent with the model that the Stn1p essential function is to promote telomere end protection through Cdc13p, stn1 alleles that truncate the C-terminal 123 residues fail to interact with Cdc13p and do not support viability when expressed at endogenous levels. Remarkably, more extensive deletions that remove an additional 185 C-terminal residues from Stn1p now allow cell growth at endogenous expression levels. The viability of these stn1-t alleles improves with increasing expression level, indicating that increased stn1-t dosage can compensate for the loss of Cdc13p-Stn1p interaction. However, telomere length is misregulated at all expression levels. Thus, an amino-terminal region of Stn1p is sufficient for its essential function, while a central region of Stn1p either negatively regulates the STN1 essential function or destabilizes the mutant Stn1 protein.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Alelos , Sítios de Ligação/genética , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genes Fúngicos , Teste de Complementação Genética , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/química , Telomerase/genética , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/química
8.
Nat Cell Biol ; 8(7): 748-55, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16767082

RESUMO

Genome stability necessitates a mechanism to protect the termini of linear chromosomes from inappropriate degradation or recombination. In many species this protection depends on 'capping' proteins that bind telomeric DNA. The budding yeast Cdc13p binds single-stranded telomeric sequences, prevents lethal degradation of chromosome ends and regulates telomere extension by telomerase. Two Cdc13-interacting proteins, Stn1p and Ten1p, are also required for viability and telomere length regulation. It has been proposed that Cdc13p DNA binding directs a Cdc13p-Stn1p-Ten1p complex to telomeres to mediate end protection. However, the functional significance of these protein interactions, and their respective roles in maintaining telomere integrity, remain undefined. Here, we show that co-overexpressing TEN1 with a truncated form of STN1 efficiently bypasses the essential role of CDC13. We further show that this truncated Stn1p binds directly to Pol12p, a polymerase alpha-primase regulatory subunit, and that Pol12 activity is required for CDC13 bypass. Thus, Stn1p and Ten1p control a Cdc13p-independent telomere capping mechanism that is coupled to the conventional DNA replication machinery.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica/genética , Substâncias Macromoleculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...