Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(8): 083113, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587106

RESUMO

A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

2.
Phys Rev Lett ; 114(5): 054801, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25699448

RESUMO

The Linac Coherent Light Source has added a self-seeding capability to the soft x-ray range using a grating monochromator system. We report the demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10(-4), and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50-fold higher brightness to users.

3.
Phys Rev Lett ; 113(25): 254801, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25554887

RESUMO

A scheme for generating two simultaneous hard-x-ray free-electron laser pulses with a controllable difference in photon energy is described and then demonstrated using the self-seeding setup at the Linac Coherent Light Source (LCLS). The scheme takes advantage of the existing LCLS equipment, which allows two independent rotations of the self-seeding diamond crystal. The two degrees of freedom are used to select two nearby crystal reflections, causing two wavelengths to be present in the forward transmitted seeding x-ray pulse. The free-electron laser system must support amplification at both desired wavelengths.

4.
Phys Rev Lett ; 111(13): 134801, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116783

RESUMO

We show that the spectral properties of a self-amplified spontaneous emission x-ray free-electron laser can be controlled by modulating the gain in magnetic undulators, thus producing one or several spectral lines within a single few femtosecond pulse. By varying the magnetic field along the undulator and the electron beam transport line, the system we demonstrate can tailor the x-ray spectrum to optimally meet numerous experimental requirements for multicolor operation.

5.
Phys Rev Lett ; 110(13): 134801, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581326

RESUMO

With an eye toward extending optical wave-mixing techniques to the x-ray regime, we present the first experimental demonstration of a two-color x-ray free-electron laser at the Linac Coherent Light Source. We combine the emittance-spoiler technique with a magnetic chicane in the undulator section to control the pulse duration and relative delay between two intense x-ray pulses and we use differently tuned canted pole undulators such that the two pulses have different wavelengths as well. Two schemes are shown to produce two-color soft x-ray pulses with a wavelength separation up to ∼1.9% and a controllable relative delay up to 40 fs.

6.
Phys Rev Lett ; 102(25): 254801, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19659082

RESUMO

The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser project presently in a commissioning phase at the SLAC National Accelerator Laboratory. We report here on very low-emittance measurements made at low bunch charge, and a few femtosecond bunch length produced by the LCLS bunch compressors. Start-to-end simulations associated with these beam parameters show the possibilities of generating hundreds of GW at 1.5 A x-ray wavelength and nearly a single longitudinally coherent spike at 1.5 nm with 2-fs duration.

7.
J Synchrotron Radiat ; 11(Pt 3): 227-38, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15103109

RESUMO

A study of the potential for the development of the Linac Coherent Light Source (LCLS) beyond the specifications of the baseline design is presented. These future developments include delivery of X-ray pulses in the 1 fs regime, extension of the spectral range, increase of the FEL power, exploitation of the spontaneous emission, and a more flexible time structure. As this potential is exploited, the LCLS can maintain its role as a world-leading instrument for many years beyond its commissioning in 2008 and initial operation as the world's first X-ray free-electron laser.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(6 Pt 2): 066501, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16241361

RESUMO

VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission (SASE) free-electron laser (FEL), which achieved saturation at 840 nm within a single-pass 4-m undulator. The experiment was performed at the Accelerator Test Facility at BNL, using a high brightness 70-MeV electron beam. A gain length shorter than 18 cm has been obtained, yielding a total gain of 2 x 10(8) at saturation. The FEL performance, including the spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. Results are compared to the three-dimensional SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL systems. An agreement between simulations and experimental results has been obtained at an unprecedented level of detail.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(3 Pt 2B): 036503, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12366273

RESUMO

Electron beam microbunching in both the fundamental and second harmonic in a high-gain self-amplified spontaneous emission free-electron laser (SASE FEL) was experimentally characterized using coherent transition radiation. The microbunching factors for both modes (b(1) and b(2)) approach unity, an indication of FEL saturation. These measurements are compared to the predictions of FEL simulations. The simultaneous capture of the microbunching and SASE radiation for individual micropulses correlate the longitudinal electron beam structure with the FEL gain.

10.
Phys Rev Lett ; 88(20): 204801, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12005570

RESUMO

Nonlinear harmonic radiation was observed using the VISA self-amplified, spontaneous emission (SASE) free-electron laser (FEL) at saturation. The gain lengths, spectra, and energies of the three lowest SASE FEL modes were experimentally characterized. The measured nonlinear harmonic gain lengths and center spectral wavelengths decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. Both the second and third nonlinear harmonics energies are about 1% of the fundamental energy. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond x rays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...