Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 632(1-3): 14-22, 2010 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-20097194

RESUMO

Amlodipine, a dihydropyridine derivative, has been shown to block not only L-type but also N-type Ca(2+) channels. Aiming to understand the mechanism underlying such a selective blockade by amlodipine, the interaction of amlodipine with N-type channels was investigated using the Xenopus oocyte expression system together with the two-microelectrode voltage-clamp technique and the binding assay for [(3)H]amlodipine. When expressed as the alpha(1B)alpha(2/)delta(1)beta(1a) combination, the N-type channel formed a high affinity binding site for [(3)H]amlodipine (K(d), 3.08nM) and was profoundly blocked by amlodipine (IC(50), 2.7 microM at -60mV). By contrast, R-type (alpha(1E)alpha(2/)delta(1)beta(1a)) channels did not possess a high affinity binding site for [(3)H]amlodipine and their channel activities were not influenced by amlodipine. In comparison of amino acid sequences in the transmembrane regions IIIS5, IIIS6 and IVS6 of the alpha(1) subunit, which are involved in dihydropyridine binding in L-type channels, the two amino acid residues Lys(1287) (corresponding to Met(1295) in alpha1B) and Phe(1699) (corresponding to Leu(1697) in alpha(1B)) were unique in alpha(1E). An amino acid substitution of Lys1287Met in IIIS5 of alpha(1E) conferred a high affinity binding site for amlodipine (K(d), 13.1nM) and a sensitivity to amlodipine (IC(50), 11.3 microM). In N-type channel, reversely, an amino acid substitution of Met1295Lys in IIIS5 of alpha(1B) deprived a high affinity binding site for amlodipine and reduced the channel blockade by amlodipine (IC(50), 29.6 microM). The results indicate that Met(1295) in the region IIIS5 of alpha(1B) is critical for amlodipine to efficiently bind and block the N-type Ca(2+) channel.


Assuntos
Anlodipino/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/metabolismo , Di-Hidropiridinas/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Anlodipino/metabolismo , Animais , Sítios de Ligação/genética , Canais de Cálcio Tipo N/genética , Di-Hidropiridinas/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Feminino , Lisina/metabolismo , Microeletrodos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Xenopus
2.
Eur J Pharmacol ; 613(1-3): 100-7, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19401195

RESUMO

1,4-dihydropyridine (DHP) Ca(2+) antagonists have recently been shown to block T-type Ca(2+) channels, which may render favorable actions on cardiovascular systems. However, this evaluation remains to be done systematically for each T-type Ca(2+) channel subtype except for the Ca(v)3.1 (alpha(1G)) subtype. To address this issue at the molecular level, blocking effects of 14 kinds of DHPs (amlodipine, aranidipine, azelnidipine, barnidipine, benidipine, cilnidipine, efonidipine, felodipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nitrendipine), which are clinically used for treatments of hypertension, on 3 subtypes of T-type Ca(2+) channels [Ca(v)3.2 (alpha(1H)), Ca(v)3.3 (alpha(1I)), and Ca(v)3.1 (alpha(1G))] were investigated in the Xenopus oocyte expression system using the two-microelectrode voltage-clamp technique. These 3 kinds (alpha(1H), alpha(1I) and alpha(1G)) of T-type channels were blocked by amlodipine, manidipine and nicardipine. On the other hand, azelnidipine, barnidipine, benidipine and efonidipine significantly blocked alpha(1H) and alpha(1G), but not alpha(1I) channels, while nilvadipine and nimodipine apparently blocked alpha(1H) and alpha(1I), but not alpha(1G) channels. Moreover, aranidipine blocked only alpha(1H) channels. By contrast, cilnidipine, felodipine, nifedipine and nitrendipine had little effects on these subtypes of T-type channels. The result indicates that the blockade of T-type Ca(2+) channels by derivatives of DHP Ca(2+) antagonist was selective for the channel subtype. Therefore, these selectivities of DHPs in blocking T-type Ca(2+) channel subtypes would provide useful pharmacological and clinical information on the mode of action of the drugs including side-effects and adverse effects.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Di-Hidropiridinas/farmacologia , Oócitos/metabolismo , Xenopus , Animais , Canais de Cálcio Tipo T/classificação , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Potenciais da Membrana/efeitos dos fármacos , Relação Estrutura-Atividade
3.
J Cardiovasc Pharmacol ; 45(3): 241-6, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15725949

RESUMO

Recent reports show that efonidipine, a dihydropyridine Ca2+ antagonist, has blocking action on T-type Ca2+ channels, which may produce favorable actions on cardiovascular systems. However, the effects of other dihydropyridine Ca2+ antagonists on T-type Ca2+ channels have not been investigated yet. Therefore, in this study, we examined the effects of dihydropyridine compounds clinically used for treatment of hypertension on a T-type Ca2+ channel subtype, alpha1G, expressed in Xenopus oocytes. These effects were compared with those on T-type Ca2+ channel. Rabbit L-type (alpha1Calpha2/deltabeta1a) or rat T-type (alpha1G) Ca2+ channel was expressed in Xenopus oocytes by injection of cRNA for each subunit. The Ba currents through expressed channels were measured by conventional 2-microelectrode voltage-clamp methods. Twelve DHPs (amlodipine, barnidipine, benidipine, cilnidipine, efonidipine, felodipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nitrendipine) and mibefradil were tested. Cilnidipine, felodipine, nifedipine, nilvadipine, minodipine, and nitrendipine had little effect on the T-type channel. The blocks by drugs at 10 microM were less than 10% at a holding potential of -100 mV. The remaining 6 drugs had blocking action on the T-type channel comparable to that on the L-type channel. The blocking actions were also comparable to that by mibefradil. These results show that many dihydropyridine Ca2+ antagonists have blocking action on the alpha1G channel subtype. The action of dihydropyridine Ca2+ antagonists in clinical treatment should be evaluated on the basis of subtype selectivity.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Di-Hidropiridinas/farmacologia , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo T/biossíntese , Canais de Cálcio Tipo T/genética , Potenciais da Membrana/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , RNA Complementar/biossíntese , RNA Complementar/genética , Xenopus
4.
Ann N Y Acad Sci ; 1025: 389-97, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15542741

RESUMO

It has recently been reported that nefiracetam, a nootropic agent, is capable of attenuating the development of morphine dependence and tolerance in mice. The mechanism of this antimorphine action is not clear. The present study was designed to address this issue using Xenopus oocytes expressing delta-opioid receptors, G proteins (G(i3alpha) or G(o1alpha)), and N-type (alpha1B) Ca2+ channels. Membrane currents through Ca2+ channels were recorded from the oocytes under voltage-clamp conditions. The Ca2+ channel currents were reduced reversibly by 40-60% in the presence of 1 microM leucine-enkephalin (Leu-Enk). The Leu-Enk-induced current inhibition was recovered promptly by nefiracetam (1 microM), while control currents in the absence of Leu-Enk were not influenced by nefiracetam. A binding assay revealed that 3H-nefiracetam preferentially bound to the membrane fraction of oocytes expressing G(i3alpha). When delta-opioid receptors were coexpressed, the binding was significantly increased. However, an additional expression of alpha1B Ca2+ channels decreased the binding. The results suggest that nefiracetam preferentially binds to G(i3alpha) associated with delta-opioid receptors, thereby inhibiting the association of G proteins with Ca2+ channels. In conclusion, nefiracetam negatively regulates the inhibitory pathway of opioid receptor-G protein-Ca2+ channel.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Nootrópicos/metabolismo , Pirrolidinonas/metabolismo , Receptores Opioides/metabolismo , Animais , Feminino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Nootrópicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Pirrolidinonas/farmacologia , Xenopus
5.
Br J Pharmacol ; 143(8): 1050-7, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15545287

RESUMO

Efonidipine, a derivative of dihydropyridine Ca(2+) antagonist, is known to block both L- and T-type Ca(2+) channels. It remains to be clarified, however, whether efonidipine affects other voltage-dependent Ca(2+) channel subtypes such as N-, P/Q- and R-types, and whether the optical isomers of efonidipine have different selectivities in blocking these Ca(2+) channels, including L- and T-types. To address these issues, the effects of efonidipine and its R(-)- and S(+)-isomers on these Ca(2+) channel subtypes were examined electrophysiologically in the expression systems using Xenopus oocytes and baby hamster kidney cells (BHK tk-ts13). Efonidipine, a mixture of R(-)- and S(+)-isomers, exerted blocking actions on L- and T-types, but no effects on N-, P/Q- and R-type Ca(2+) channels. The selective blocking actions on L- and T-type channels were reproduced by the S(+)-efonidipine isomer. By contrast, the R(-)-efonidipine isomer preferentially blocked T-type channels. The blocking actions of efonidipine and its enantiomers were dependent on holding potentials. These findings indicate that the R(-)-isomer of efonidipine is a specific blocker of the T-type Ca(2+) channel.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/fisiologia , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Nitrofenóis/química , Nitrofenóis/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Animais , Canais de Cálcio Tipo T/metabolismo , Linhagem Celular , Cricetinae , Relação Dose-Resposta a Droga , Feminino , Estereoisomerismo , Xenopus
6.
Neurosci Res ; 49(1): 101-11, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15099708

RESUMO

The uptake of L-serine, a nonessential amino acid known to be transported by the neutral amino acid transporter system ASC, was studied in primary cultures of rat neurons and astrocytes, and compared with that in human embryonic kidney (HEK293) cells transfected with rat ASCT1 cDNA. We first cloned neutral amino acid transporter ASCT1 from rat neurons in primary culture as a transporter candidate for L-serine uptake in the brain. The predicted amino acid sequence from rat ASCT1 exhibited significant homology with mouse and human ASCT1s. The amino acid sequence of rat ASCT1 was 92 and 84% identical to that of mouse and of human ASCT1, respectively. HEK293 cells expressing the rat ASCT1 cDNA showed a saturable dose-dependent and Na(+)-dependent increase in L-[(3)H] serine uptake by high affinity ( K(m) = 67 microM). The substrate selectivity of rat ASCT1 was the same as those of the mouse and human transporter. Northern blot analysis revealed that ASCT1 mRNA was ubiquitously expressed in the brain, with its highest concentration in the striatum and hippocampus. When the uptake of L -[(3)H] serine into rat primary neurons or astrocytes was compared with that of HEK293 cells expressing rat ASCT1 or rat ASCT2 cDNA, the inhibition profile of amino acids for the rat neurons quite resembled that for HEK293 cells expressing rat ASCT1. In contrast, the profile for rat astrocytes was a mixture of that for HEK293 cells expressing rat ASCT1 and that for the cells expressing rat ASCT2. Furthermore, L-[(3)H] serine uptake in neurons was fully Na(+)-dependent. ASCT1 mRNA was expressed in both primary neurons and astrocytes, whereas ASCT2 mRNA was expressed only in astrocytes, as determined by using RT-PCR with primers specific for the rat ASCT1 or rat ASCT2 transporter. Taken together, these findings indicate that ASCT1 predominantly contributes to the uptake of L-serine in primary neurons.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos , Encéfalo/citologia , Neurônios/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Animais , Astrócitos/metabolismo , Northern Blotting , Células Cultivadas , Colina/farmacologia , Clonagem Molecular/métodos , Embrião de Mamíferos , Humanos , Rim , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Cloreto de Sódio/farmacologia , Fatores de Tempo , Transfecção/métodos , Trítio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...