Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 164, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765170

RESUMO

Three-dimensional retinal organoids (3D-retinas) are a promising graft source for transplantation therapy. We previously developed self-organizing culture for 3D-retina generation from human pluripotent stem cells (hPSCs). Here we present a quality control method and preclinical studies for tissue-sheet transplantation. Self-organizing hPSCs differentiated into both retinal and off-target tissues. Gene expression analyses identified the major off-target tissues as eye-related, cortex-like, and spinal cord-like tissues. For quality control, we developed a qPCR-based test in which each hPSC-derived neuroepithelium was dissected into two tissue-sheets: inner-central sheet for transplantation and outer-peripheral sheet for qPCR to ensure retinal tissue selection. During qPCR, tissue-sheets were stored for 3-4 days using a newly developed preservation method. In a rat tumorigenicity study, no transplant-related adverse events were observed. In retinal degeneration model rats, retinal transplants differentiated into mature photoreceptors and exhibited light responses in electrophysiology assays. These results demonstrate our rationale toward self-organizing retinal sheet transplantation therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Degeneração Retiniana , Humanos , Ratos , Animais , Retina/metabolismo , Degeneração Retiniana/terapia , Degeneração Retiniana/metabolismo , Células Fotorreceptoras
3.
Sci Rep ; 9(1): 18936, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831759

RESUMO

A three-dimensional retinal tissue (3D-retina) is a promising graft source for retinal transplantation therapy. We previously demonstrated that embryonic stem cells (ESCs) can generate 3D-retina in vitro using a self-organizing stem cell culture technique known as SFEBq. Here we show an optimized culture method for 3D-retina generation from feeder-free human pluripotent stem cells (hPSCs). Although feeder-free hPSC-maintenance culture was suitable for cell therapy, feeder-free hPSC-derived aggregates tended to collapse during 3D-xdifferentiation culture. We found that the initial hPSC state was a key factor and that preconditioning of the hPSC state by modulating TGF-beta and Shh signaling improved self-formation of 3D-neuroepithelium. Using the preconditioning method, several feeder-free hPSC lines robustly differentiated into 3D-retina. In addition, changing preconditioning stimuli in undifferentiated hPSCs altered the proportions of neural retina and retinal pigment epithelium, important quality factors for 3D-retina. We demonstrated that the feeder-free hiPSC-derived 3D-retina differentiated into rod and cone photoreceptors in vitro and in vivo. Thus, preconditioning is a useful culture methodology for cell therapy to direct the initial hPSC state toward self-organizing 3D-neuroepithelium.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes , Retina , Transdução de Sinais , Linhagem Celular , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Retina/citologia , Retina/metabolismo
4.
Genes Cells ; 20(5): 367-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25727848

RESUMO

Induced pluripotent stem cells (iPSCs) have been established from various somatic cell types. Accumulating evidence suggests that iPSCs from different cell sources have distinct molecular and functional properties. Here, we establish iPSC derived from mouse pancreas (Panc-iPSC) and compared their properties with those of iPSC derived from tail-tip fibroblast (TTF-iPSC). The metabolic profile differs between Panc-iPSC and TTF-iPSC, indicating distinct cell properties in these iPSCs. Expression of Pdx1, a marker of pancreas differentiation, is increased through formation of embryoid body (EB) in Panc-iPSC, but the level is similar to that in TTF-iPSC. In contrast, EBs derived from Panc-iPSC express liver-specific albumin (Alb) and alpha-fetoprotein (Afp) genes much more strongly than those from TTF-iPSC. Epigenetic analysis shows a different histone modification pattern between Panc-iPSC and TTF-iPSC. Promoter regions of Alb and Afp genes in Panc-iPSC are suggested to have a more open chromatin structure than those in TTF-iPSC, which also is seen in primary cultured pancreatic cells. Our data suggest that Panc-iPSC possesses distinct differentiation capacity from that of TTF-PSC, which may be influenced by epigenetic memory.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Pâncreas/citologia , Animais , Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Metaboloma , Camundongos
5.
J Diabetes Investig ; 2(4): 271-5, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-24843497

RESUMO

Transplantation of surrogate ß-cells is a promising option for the treatment of insulin-deficient diabetes mellitus in the future. Although pancreatic exocrine cells of rodents have been shown to transdifferentiate into insulin-secreting cells, no studies are reported on human exocrine cells. Here, we report the generation of insulin-secreting cells from exocrine cells of the human pancreas. When cultured in suspension with epidermal growth factor, human pancreatic exocrine cells readily formed spherical cell clusters. Expression of Pdx1 was induced in all 19 cases in which we successfully isolated exocrine cells, and insulin expression was induced in 11 cases. In addition, insulin secretion was evaluated in four cases, and the newly-made cells were found to secrete insulin in response to various stimuli. Although further studies are required to improve both the quality and quantity of such insulin-secreting cells, our data suggest that pancreatic exocrine cells represent a potential source of insulin-secreting cells for treatment of type 1 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00095.x, 2011).

6.
Chromosome Res ; 12(4): 383-95, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15241017

RESUMO

We conducted comparative FISH analyses to investigate the chromosomal rearrangements that have occurred during the evolution of the rodent genus Apodemus, which inhabits broadleaf forests in the temperate zone of the Palaearctic region. Chromosome-specific painting probes of the laboratory mouse were hybridized to chromosomes of seven Apodemus species, A. agrarius, A. argenteus, A. gurkha, A. peninsulae, A. semotus, A. speciosus and A. sylvaticus, and homologous chromosomal regions were determined in the species for the study of karyotypic evolution. Differences in the hybridization patterns were found in nine pairs of autosomes among the seven species. The chromosomal location of the 5S rRNA genes on the telomeric region of chromosome 20 was highly conserved in all the species. In contrast, there was much wider variation in the location of the 18S-28S rRNA genes, although they were predominantly located on chromosomes 7, 8 and 12. Phylogenetic relationships of the seven Apodemus species were inferred from the chromosome rearrangements and the chromosomal distribution patterns of the 18S-28S rRNA genes. The karyotypic relationships correlated well with the molecular phylogeny, and A. semotus had the most highly conserved karyotype among the seven species.


Assuntos
Evolução Biológica , Coloração Cromossômica , Cromossomos/genética , Sondas de DNA/genética , Genes de RNAr/genética , Muridae/genética , Filogenia , Animais , Cariotipagem , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...