Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(14): 25195-25207, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237055

RESUMO

We have been developing a light-weight X-ray telescope using micro electro mechanical systems technologies for future space missions. Micropores of 20 µm width are formed in a 4-inch Si wafer with deep reactive ion etching, and their sidewalls are used as X-ray reflection mirrors. The flatness of the sidewall is an important factor to determine the imaging performance, angular resolution. It is known that hydrogen annealing is effective to smooth a Si surface. We tested 150 hour annealing to achieve the ultimately smooth sidewalls. After 50 hour, 100 hour, and 150 hour annealing, the angular resolution improved 10.3, 4.0, and 2.6 arcmin in full width at half maximum (FWHM) and 17.0, 14.5, and 10.8 arcmin in half-power width (HPW). In spite of this improvement, the edge shapes of the sidewall were rounded. Therefore, both edges of the sidewall were ground and polished, and then the angular resolution was improved further to 3.2 arcmin (FWHM) and 5.4 arcmin (HPW).

2.
Appl Opt ; 59(28): 8793-8805, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33104563

RESUMO

In this paper, we present a silicon reflector developed through a hot plastic deformation process and used as a lightweight, high-angular-resolution x-ray mirror. We deformed the silicon substrate using conical dies with a curvature radius of 100 mm. The measured radii of the reflector were approximately 100 µm greater than the design values. Due to a gap between the die and the reflector toward the edge, it is probable that the substrate did not reach the yield point, and an elastic spring back occurred. In addition, we have evaluated the x-ray imaging capability of the plastically deformed silicon reflector for the first time, to the best of our knowledge. The estimated angular resolution is 1.76 arc min from the entire reflector, and 0.52 arc min in the best region. For the enhancement of the imaging capability, we may improve the shape of die and determine the best parameter set for the deformation.

3.
Appl Opt ; 58(19): 5240-5247, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503620

RESUMO

Silicon micropore optics using deep reactive ion etching of silicon wafers has been being developed for future x-ray astronomy missions. Sidewalls of the micropores through a thin wafer with a typical thickness of hundreds of micrometers and a pore width of ∼20 µm are used for x-ray mirrors. However, burr structures observed after etching with a typical height of a few micrometers at the micropore edges are known to significantly reduce x-ray reflectivity. A new grinding and chemical mechanical polishing process is introduced to remove the burr structures. Both sides of the silicon wafer were ground and precisely polished after etching. X-ray reflectivity measurements confirmed an increase of reflectivity by 2-15 times at incident angles of 0.8-0.2 deg. The surface microroughness worsened from 2.0±0.2 nm rms to 7.8-0.8+0.6 nm rms; however, an additional annealing recovered the smooth surface and the estimated surface microroughness was <1.4 nm rms. This new process enables not only removing the burr structures but also choosing a flat part of the sidewalls for better angular resolution.

4.
Appl Opt ; 57(12): 3237-3243, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29714311

RESUMO

We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al2O3∼10 nm and Pt ∼20 nm was successfully deposited on the micropores whose width and depth are 20 µm and 300 µm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2 nm rms to 2.2±0.2 nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...