Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 214(2): 257-64, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11800390

RESUMO

During ripening of grape (Vitis vinifera L.) berries, softening occurs concomitantly with the second growth phase of the fruit and involves significant changes in the properties of cell wall polysaccharides. Here, the activities of enzymes that might participate in cell wall modification have been monitored throughout berry development. Alpha-galactosidase (EC 3.2.1.22), beta-galactosidase (EC 3.2.1.23) and pectin methylesterase (EC 3.1.1.11) activities were present, but no polygalacturonase (EC 3.2.1.15), cellulase (EC 3.2.1.4), xyloglucanase (xyloglucan-specific cellulase EC 3.2.1.4) or galactanase (EC 3.2.1.89) could be detected. The accumulation of mRNAs encoding wall-modifying enzymes was examined by northern hybridization analysis. Transcripts for beta-galactosidase, pectin methylesterase, polygalacturonase, pectate lyase (EC 4.2.2.2) and xyloglucan endotransglycosylase (EC 2.4.1.207) were present during ripening, although polygalacturonase activity had not been detected in berry extracts. Cellulases could not be detected in ripening berries, either at the enzyme or mRNA levels. The increase in beta-galactosidase activity and mRNA is consistent with the observed decrease in type-I arabinogalactan content of the walls during ripening, and the detection of polygalacturonase and pectate lyase mRNAs might explain the increased solubility of galacturonan in walls of ripening grapes. Thus, the modification of cell wall polysaccharides during softening of grape berries is a complex process involving subtle changes to different components of the wall, and in many cases only small amounts of enzyme activity are required to effect these changes.


Assuntos
Parede Celular/metabolismo , Enzimas/genética , Frutas/enzimologia , Vitis/enzimologia , Northern Blotting , Southern Blotting , Parede Celular/genética , Enzimas/isolamento & purificação , Enzimas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Polissacarídeos/metabolismo , RNA Mensageiro/análise , Transcrição Gênica , Vitis/genética , Vitis/crescimento & desenvolvimento
2.
Anal Biochem ; 278(1): 69-73, 2000 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-10640355

RESUMO

Many plant cell wall components such as the polysaccharides xylans and pectins or the glycoproteins arabinogalactan proteins and extensins contain arabinosyl residues. The arabinosyl substituents are thought to be incorporated into these wall polymers by the action of arabinosyltransferases using UDP-l-arabinose as the precursor. UDP-l-arabinose is not commercially available and therefore a procedure for generating UDP-l-arabinose was developed for use in studies on the biosynthesis of the arabinose-containing polymers. In this procedure UDP-d-xylose is incubated with an enzyme preparation from wheat germ and the nucleotide sugars in the reaction mixture are extracted. High-performance anion-exchange chromatography of the extract resolves two major UV-absorbing components: one corresponding to UDP-xylose and a second that elutes earlier. TLC analysis of collected and hydrolyzed fractions demonstrated the presence of l-arabinose in the early eluting fraction. Further analysis by NMR identified the compound as UDP-beta-l-arabinopyranose. The procedure reported here provides an efficient method for preparing either radioactive UDP-l-[(14)C]arabinose or nonradioactive UDP-l-arabinose and can also be used as an assay for UDP-xylose-4-epimerase activity.


Assuntos
Arabinose/análogos & derivados , Triticum/metabolismo , Açúcares de Uridina Difosfato/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/biossíntese , Sementes/metabolismo , Estereoisomerismo , Uridina Difosfato Xilose/metabolismo , Xilose/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...