Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 9(1): 447, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27646396

RESUMO

BACKGROUND: FapR protein from the psychrotrophic species Exiguobacterium antarcticum B7 was expressed and purified, and subsequently evaluated for its capacity to bind to the promoter regions of the fabH1-fabF and fapR-plsX-fabD-fabG operons, using electrophoretic mobility shift assay. The genes that compose these operons encode for enzymes involved in the de novo synthesis of fatty acids molecules. In Bacillus subtilis, FapR regulates the expression of these operons, and consequently has influence in the synthesis of long or short-chain fatty acids. To analyze the bacterial cold adaptation, this is an important metabolic pathway because psychrotrophic microrganisms tend to synthesize short and branched-chain unsaturated fatty acids at cold to maintain cell membrane fluidity. RESULTS: In this work, it was observed that recombinant protein was able to bind to the promoter of the fully amplified fabH1-fabF and fapR-plsX-fabD-fabG operons. However, FapR was unable to bind to the promoter of fapR-plsX-fabD-fabG operon when synthesized only up to the protein-binding palindrome 5'-TTAGTACCAGATACTAA-3', thus showing the importance of the entire promoter sequence for the correct protein-DNA interaction. CONCLUSIONS: Through this observation, we demonstrate that the FapR protein possibly regulates the same operons as described for other species, which emphasizes its importance to cold adaptation process of E. antarcticum B7, a psychrotrophic bacterium isolated at Antarctica.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Graxos/biossíntese , Regiões Antárticas , Bacillus/isolamento & purificação , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética
2.
BMC Genomics ; 15: 986, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25407400

RESUMO

BACKGROUND: Exiguobacterium antarcticum strain B7 is a Gram-positive psychrotrophic bacterial species isolated in Antarctica. Although this bacteria has been poorly studied, its genome has already been sequenced. Therefore, it is an appropriate model for the study of thermal adaptation. In the present study, we analyzed the transcriptomes and proteomes of E. antarcticum B7 grown at 0°C and 37°C by SOLiD RNA-Seq, Ion Torrent RNA-Seq and two-dimensional difference gel electrophoresis tandem mass spectrometry (2D-DIGE-MS/MS). RESULTS: We found expression of 2,058 transcripts in all replicates from both platforms and differential expression of 564 genes (absolute log2FC≥1, P-value<0.001) comparing the two temperatures by RNA-Seq. A total of 73 spots were differentially expressed between the two temperatures on 2D-DIGE, 25 of which were identified by MS/MS. Some proteins exhibited patterns of dispersion in the gel that are characteristic of post-translational modifications. CONCLUSIONS: Our findings suggest that the two sequencing platforms yielded similar results and that different omic approaches may be used to improve the understanding of gene expression. To adapt to low temperatures, E. antarcticum B7 expresses four of the six cold-shock proteins present in its genome. The cold-shock proteins were the most abundant in the bacterial proteome at 0°C. Some of the differentially expressed genes are required to preserve transcription and translation, while others encode proteins that contribute to the maintenance of the intracellular environment and appropriate protein folding. The results denote the complexity intrinsic to the adaptation of psychrotrophic organisms to cold environments and are based on two omic approaches. They also unveil the lifestyle of a bacterial species isolated in Antarctica.


Assuntos
Adaptação Fisiológica/genética , Bacillaceae/genética , Bacillaceae/fisiologia , Temperatura Baixa , Regulação Bacteriana da Expressão Gênica , Genômica/métodos , Bacillaceae/crescimento & desenvolvimento , Membrana Celular/metabolismo , Proteínas e Peptídeos de Choque Frio/metabolismo , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Espectrometria de Massas , Biossíntese de Proteínas , Dobramento de Proteína , Proteoma/metabolismo , Análise de Sequência de RNA , Transcrição Gênica
3.
J Biol Inorg Chem ; 19(8): 1277-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25139711

RESUMO

Desulfovibrio alaskensis G20, a sulfate-reducing bacterium, contains an arsRBC2C3 operon that encodes two putative arsenate reductases, DaG20_ArsC2 and DaG20_ArsC3. In this study, resistance assays in E. coli transformed with plasmids containing either of the two recombinant arsenate reductases, showed that only DaG20_ArsC3 is functional and able to confer arsenate resistance. Kinetic studies revealed that this enzyme uses thioredoxin as electron donor and therefore belongs to Staphylococcus aureus plasmid pI258 and Bacillus subtilis thioredoxin-coupled arsenate reductases family. Both enzymes from this family contain a potassium-binding site, but only in Sa_ArsC does potassium actually binds resulting in a lower K m. Important differences between the S. aureus and B. subtilis enzymes and DaG20_ArsC3 are observed. DaG20_ArsC3 contains only two (Asn10, Ser33) of the four (Asn10, Ser33, Thr63, Asp65) conserved amino acid residues that form the potassium-binding site and the kinetics is not significantly affected by the presence of either potassium or sulfate ions. Isothermal titration calorimetry measurements confirmed nonspecific binding of K(+) and Na(+), corroborating the non-relevance of these cations for catalysis. Furthermore, the low K m and high k cat values determined for DaG20_ArsC3 revealed that this enzyme is the most catalytically efficient potassium-independent arsenate reductase described so far and, for the first time indicates that potassium binding is not essential to have low K m, for Trx-arsenate reductases.


Assuntos
Arseniato Redutases/metabolismo , Desulfovibrio/enzimologia , Sequência de Aminoácidos , Arseniato Redutases/genética , Arseniato Redutases/isolamento & purificação , Biocatálise , Calorimetria , Cinética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...